
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2011

A probabilistic approach to early communication
performance estimation for electronic system-level
design
Ramon Alejandro Mercado
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Electrical and Computer Engineering Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Mercado, Ramon Alejandro, "A probabilistic approach to early communication performance estimation for electronic system-level
design" (2011). Graduate Theses and Dissertations. 10470.
https://lib.dr.iastate.edu/etd/10470

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F10470&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F10470&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F10470&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F10470&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F10470&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F10470&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=lib.dr.iastate.edu%2Fetd%2F10470&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/10470?utm_source=lib.dr.iastate.edu%2Fetd%2F10470&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

A probabilistic approach to early communication

performance estimation for electronic system-level design

by

Ramón A. Mercado Reyes

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Computer Engineering

Program of Study Committee:

Diane T. Rover, Major Professor

Akhilesh Tyagi

Arun Somani

Joseph Zambreno

Zhao Zhang

Ying Cai

Iowa State University

Ames, Iowa

2011

Copyright c© Ramón A. Mercado Reyes, 2011. All rights reserved.

www.manaraa.com

ii

DEDICATION

This work is dedicated to my father, who showed me that I had the capacity to accom-

plish everything I set my mind into; to my mother, who gave me the conviction that drives

everything I do; to my sister who taught me to be responsible above all; and to my dearest

Zaida, whose constant support made the conclusion of this work a reality.

www.manaraa.com

iii

TABLE OF CONTENTS

LIST OF TABLES vi

LIST OF FIGURES vii

ACKNOWLEDGEMENTS ix

ABSTRACT x

Chapter 1. Introduction 1

1.1 Motivation . 1

1.2 Problem Statement . 4

1.3 Objectives and Contribution . 5

1.3.1 Objectives . 5

1.3.2 Contributions . 6

1.4 Overview of Dissertation . 7

Chapter 2. Related Work 9

2.1 System Level Design . 9

2.2 System Level Communication Modeling . 12

2.3 System Level Performance Estimation . 15

Chapter 3. Probability as a System Metric 18

3.1 Communication Architecture Design Alternatives 18

3.1.1 Communication Performance . 20

3.1.2 System Performance . 22

www.manaraa.com

iv

3.2 Communication Modeling at Higher Abstraction Levels 24

3.2.1 Performance Estimation for Un-timed Communication Models 24

3.2.2 The Probabilistic Metric . 26

3.3 Probability Metric for System Level Design . 28

Chapter 4. Statistical Model 30

4.1 Modeling Communication Components . 30

4.2 Developing a Statistical Model . 32

4.3 A Mixture Model . 34

4.4 A Communication-Centric Modeling Methodology 37

4.5 Hotspot Traffic Model . 39

Chapter 5. Probability Metric 43

5.1 Path Analysis . 44

5.2 Probability Computation . 45

5.2.1 Probability of the Difference . 47

5.3 Travel Time Analysis . 49

5.3.1 Bandwidth . 49

5.3.2 Packet Size . 50

5.3.3 Probability of Collision as a Function of TT 50

Chapter 6. Case Study: System-Level Design with Mixture Models 53

6.1 System-Level Design . 53

6.1.1 Average Flit Delay . 54

6.1.2 Probability Metric . 54

6.2 Design Space Exploration . 56

6.2.1 Adaptive Routing . 56

6.2.2 XY Routing . 58

6.2.3 High Level Simulation . 58

6.3 Transpose Traffic . 62

www.manaraa.com

v

6.3.1 Mixture Models for Transpose Traffic . 63

6.4 System Probability Estimate Evaluation . 64

Chapter 7. Summary and Conclusion 69

7.1 The Mixture Model . 69

7.2 Probability of Collision . 70

7.3 System Level Design . 72

7.4 Future Work . 73

7.4.1 Further Exploration of the Mixture Models 73

7.4.2 Further Path Analysis . 73

7.4.3 Further Assessment of Communication Architecture Features 74

7.4.4 Further Validation of Ps
c . 75

7.5 Final Remarks . 75

BIBLIOGRAPHY 77

www.manaraa.com

vi

LIST OF TABLES

Table 4.1 Exponential Fitting, XY Routing, Random Traffic 34

Table 4.2 Exponential Fitting, XY Routing . 41

Table 5.1 Frequency of sharing types, from simulation. 45

Table 5.2 Frequency of sharing types, from simulation. 47

Table 5.3 Travel delay as a function of Bandwidth 50

Table 5.4 Travel delay as a function of Packet Size 50

Table 5.5 System Probability of Collision: Ps
c (TT) . 51

Table 6.1 Mixture Models for Adaptive Architecture 57

Table 6.2 Mixture Models for XY Architecture . 58

Table 6.3 Shared Link Frequencies, XY and Adaptive routing with 64 flit packet size. 60

Table 6.4 Mixture Models for Transpose Traffic . 63

Table 6.5 Shared Link Frequencies, XY and Adaptive routing with 64 flit packet

size and Transpose Traffic. 64

www.manaraa.com

vii

LIST OF FIGURES

Figure 1.1 Design Productivity Gap . 1

Figure 1.2 Computation/Communication System-Level Design Space 2

Figure 2.1 SpecC Design Flow . 10

Figure 2.2 Communication Design Space . 11

Figure 3.1 Abstract Interconnection Network . 19

Figure 3.2 Network Message . 21

Figure 3.3 3x3 Mesh Interconnection Network . 22

Figure 3.4 Typical Routing Flow . 23

Figure 3.5 Node P-Model . 25

Figure 3.6 System Model . 26

Figure 3.7 Paths pm and pn that share one channel. 27

Figure 3.8 System Level Exploration . 28

Figure 3.9 Model to Implementation . 29

Figure 4.1 Communication Components in System 32

Figure 4.2 Routing Time Distribution and Fitting for Random Traffic 33

Figure 4.3 Communication Components in System 35

Figure 4.4 MSE Behavior Across Window Sizes (Random) 36

Figure 4.5 Mixture Models for Random Traffic . 38

Figure 4.6 Routing Time Distribution and Fitting for Hotspot Traffic 40

Figure 4.7 MSE Behavior Across Window Sizes (Random) 41

Figure 4.8 Mixture Models for Random Traffic . 42

www.manaraa.com

viii

Figure 5.1 Path for Packet A (red) and B (blue) . 44

Figure 5.2 Collision Events . 46

Figure 5.3 Probability Density Function for Sharing Type 1|2 49

Figure 5.4 Probability of Collision for XY Routing - Random Traffic, 32[bits/cycle] 52

Figure 6.1 Anatomy of a Network Message . 55

Figure 6.2 Mixture Models: Adaptive Routing, Hotspot Traffic, 64 flits 57

Figure 6.3 Mixture Models: XY Routing, Hotspot Traffic, 64 flits 59

Figure 6.4 Ps
c for XY and Adaptive routing. 62

Figure 6.5 Normalized Ps
c Difference with respect to Adaptive routing. 63

Figure 6.6 Performance estimate for XY and Adaptive routing when loaded under

Transpose Traffic. 65

Figure 6.7 Ps
c for XY and adaptive, hotspot v. transpose. 66

Figure 6.8 Normalized Ps
c differences with respect to adaptive routing, hotspot v.

transpose. 67

Figure 6.9 Ps
c for XY routing, hotspot v. transpose traffic. 68

Figure 6.10 Ps
c for adaptive routing, hotspot v. transpose traffic. 68

www.manaraa.com

ix

ACKNOWLEDGEMENTS

This research would no exist without the support of many other people. Hence, I want to

express my gratitude to my Major Professor Diane Rover for encouraging me to work towards

a PhD and her continuous support on my thesis. Special thanks also go to Professor Ahmed

Kamal for his valuable comments for the improvement of this research; and to Professors

Zhao Zhang and Joseph Zambreno for their support throughout my student career. My

sincere appreciation goes to my esteem colleague Lizandro Solano for the many fruitful

discussions and the inspiring working environment we developed.

Finally, this work would not have been possible without the support from NSF grant

No. 0431924 and a GAANN grant from the U.S. Dept. of Education to the Information

Infrastructure Institute at Iowa State.

www.manaraa.com

x

ABSTRACT

Today’s embedded system designers face the challenges of ever increasing complexity and

shorter time-to-market deadlines. System-level methodologies emerge to meet these chal-

lenges. Refinement-based methodologies, such as the SpecC methodology and Transaction

Level Modeling, continue to gain popularity in the embedded system designers’ community.

However, as more communication-dominated applications and architectures appear in the

market, designers find that the lack of models allowing system-level communication analysis

is a major limiting factor in current system-level design methodologies. Thus, modeling for

system-level communication analysis is key for a design methodology to thrive with today’s

embedded system designers. This work presents a new approach to system-level modeling

that allows better communication analysis earlier in the design process. This approach de-

fines a new model that utilizes random variables to include the communication details at

higher abstraction levels. This work proposes a probabilistic model to include and evaluate

the system communication features in the higher abstraction level. Guidelines to include

the proposed model into a refinement-based methodology are presented, and methods for

performance estimation are shown.

www.manaraa.com

1

CHAPTER 1. Introduction

1.1 Motivation

System complexity continues to grow according to the well-known Moore’s law [45]. In

contrast, designer productivity grows at a much lower rate. The International Technology

Roadmap (ITRS) [1] defines the design productivity gap as the growing disparity between the

system complexity and designer productivity growths. Figure 1.1 depicts both the hardware

design gap and the system design gap. Hardware design gap refers to the productivity gap

considering only the design of the hardware components in the system. On the other hand,

the system design gap includes the software demands, which double every 10 months, and

the system productivity including the development of the necessary hardware-dependant

software and application code for system design.

Figure 1.1: Design Productivity Gap

This growing productivity gap results in increasing non-recurrent engineering costs, and

www.manaraa.com

2

large time-to-market cycles. To deal with this growing productivity gap the only solution is

system-level design [28]. System-level design reduces the productivity gap by introducing

new abstraction levels that allow designers to handle progressively more complex systems.

The higher abstraction levels in system-level design hide non-essential details from the

designers and allow for a coarser design space exploration. A common representation of

the design space is an orthogonal composition of the computation and communication de-

sign alternatives, shown in Figure 1.2. This orthogonal relation between computation and

communication allows the designer to explore the computation architecture neglecting the

communication effects on the system design. Starting at the highest abstraction levels, un-

timed computation and communication, the system is refined by adding more details along

the computation axis and evaluating the resulting model at the next level of abstraction.

Figure 1.2: Computation/Communication System-Level Design Space

The manner in which the design space is explored, i.e. a broader computation ex-

ploration followed by a narrow communication exploration, reveals a computation-centric

design methodology. Computation-centric design is reasonable where higher computation

power translates to higher system performance. However, with the proliferation of embed-

ded communication systems (e.g. smart-phones, GPS devices, etc) and multi-core systems,

improvements in computation power are negated by communication issues. Today’s proces-

www.manaraa.com

3

sors are capable of processing large amounts of data much faster than the communication

architecture can deliver this data. The system-level design community must reacts to this

paradigm change, and introduce new tools and methodologies to better integrate commu-

nication analysis into the early stages of the design process. From the 2009 ITRS[1] report,

Design chapter

“Global synchronization becomes prohibitively costly due to process variability

and power dissipation, and cross-chip signaling can no longer be achieved in a

single clock cycle. This, system design must comprehend networking and dis-

tributed computation metaphors (for example, with communication structures

design first, and functional blocks then integrated into the communication back-

bone), as well as interactions between functional and interconnect pipelining.”

Some researchers in the field of system-level design acknowledge this paradigm change

and start to move toward a communication-centric design process. Some examples include

the works by Sgroi et al. [57] and Coppola et al. [13] which introduce SystemC[49] libraries

to capture the characteristics of network-on-chip (NoC) architectures, as a collection of the

services these architectures offer. On the other hand, Pasricha et al. [50] integrates the

application behavior with the communication architecture details, generating a transaction

based model that is used during architecture exploration.

Unlike the previous works, our approach develops higher abstraction models based on

the impact that communication architecture features have on the system performance. Ex-

plicitly, we base our analysis on the routing latency of NoC architectures, and develop sta-

tistical models capable of capturing the effect that different communication features have on

this latency. Further, this this research introduces a new performance estimate needed for

the analysis of the communication impact on system performance, at the highest abstraction

level.

www.manaraa.com

4

1.2 Problem Statement

Recently the area of system-level design has seen a migration from computation-centric de-

sign, to communication-centric. This migration is caused by the realization that communication

is becoming the performance bottleneck in today’s complex systems. System-level design can

no longer perform computation-centric architecture exploration neglecting the communica-

tion effects on the system performance, and pushing the communication architecture into the

later stages of system design.

Communication analysis must be included at the higher abstraction levels. Nevertheless,

performing communication analysis at higher abstraction levels is not trivial. The main

challenge is the lack of timing information at these abstraction levels. Without this timing

information, it is difficult to define communication performance metrics and acquire accurate

performance estimates to guide the space exploration.

This research focuses on the methods, tools, and modeling guidelines needed to estimate

communication performance at the abstraction levels where the required timing details are

not available. The key issues are (1) the abstraction of the communication architecture fea-

tures, and (2) performance estimation given the abstracted communication features.

Thesis Statement: System-level communication characteristics provide meaningful information that

in the past has only been used for interconnect optimization. Random variables and statistical methods

may be used in a novel manner to estimate communication performance at higher levels of abstraction,

where most communication details are not available. A new system design paradigm is defined that

evaluates communication characteristics at higher levels of abstraction in the design methodology and

performance analysis. New in this communication-centric design is the extraction of the application’s

communication behavior and the abstraction of the platform communication characteristics. The ap-

plication communication behavior and platform communication characteristics may be introduced at

higher levels of abstractions using random variables, and statistical methods can provide the tools to

better estimate the system performance at these levels.

www.manaraa.com

5

1.3 Objectives and Contribution

1.3.1 Objectives

The primary objective of this work is to describe the methods by wich communication

information may be introduce at earlier stages into the design process. To this end this re-

search explores modeling of the communication architecture features at higher abstraction

levels, and puts forward a new performance estimate to help guide the design process. The

objectives of this research span across two major areas: system modeling and performance esti-

mation.

1.3.1.1 System Modeling

• This work sets out to define new abstraction levels for communication components. To

accomplish this, it is necessary to study and understand the communication informa-

tion available at the different abstraction levels, and more importantly, the communica-

tion information necessary to perform design decisions. This research presents a new

communication driven system-level design space, and evaluates the impact different

communication features have on the system performance. In particular Chapter 3 or-

ganizes the communication design features in categories of broad and narrow impact.

This organization aims to point out what communication features must be covered by

the higher abstraction level models, if these models are to be useful for early system-

level design exploration.

• This research aims to provide new models ready to use in system-level design, but

more important are the methods used to develop these models. As presented in Chap-

ter 4, the high level models introduced here are derived using statistical tools, and

reflect the low level behavior of the communication features that have broader impact.

Additionally, Chapter 4 outlines the step designers will follow to produce probability

distributions derived from empirical data, and modeled by known density functions,

to build their own models, and further improve the communication analysis.

www.manaraa.com

6

1.3.1.2 Performance Estimation

• A new high-level communication estimate is introduce, that provides the necessary

tools for communication-centric design exploration. Called the probabilistic metric, it

combines the proposed statistical model with the traffic characteristics to produce a

communication performance estimator at the higher abstraction levels, where the lack

of communication details normally prohibit such estimation. Using the probabilistic

metric, designers can evaluate the communication effects earlier on the design pro-

cesses. Chapter 3 explains the necessity for early communication analysis on today’s

embedded systems, and Chapter 5 presents the details of the development and imple-

mentation of the probability metric.

• Models, metrics, and estimation tools are useless without the necessary framework in

which to apply them. To provide such framework, SystemC is chosen as the platform

for implementing the models and metrics presented in this work. This framework

integrates the statistical models along with SystemC simulation engine, and produces

the necessary data for the probabilistic metric computation. Within this simulation

framework designers and researchers can use the provided models for system design,

or any new models they derive.

1.3.2 Contributions

The contributions for this research are in three main areas. (1) Modeling to include com-

munication details at higher abstractions levels, (2) performance estimation, and (3) system-

level design space exploration.

1. Communication Modeling at Higher Abstraction Levels

• More complete communication model at higher abstraction levels. Through the

use of statistical tools, these models incorporate more communication details than

previously possible.

www.manaraa.com

7

• Tools and guidelines for building models that capture the system communi-

cation characteristics at higher levels of abstraction. More important than the

models are the methods and guidelines that developed these models. System de-

signers benefit more from a set of guidelines that provides them the knowhow

to construct similar models for their systems. This research outlines the steps and

necessary information to develop statistical models for systems other than the ones

included in this work.

2. Performance Estimation

• Communication performance estimation at higher abstraction levels. For any

model to be useful in system design, it must provide performance estimates of the

details that it models. This research introduces a new performance estimate for

the new communication models developed. Known as the probability metric and

based on contention behavior, this research is the first to show how this probability

may be used as an estimator.

3. System-Level Design Space Exploration

• Design space exploration through the probabilistic metric. Performance esti-

mates give information about the current model, but to perform design space

exploration it is necessary to compare the estimates from different models. Tra-

ditionally estimates can be directly compared, but this may not be the case for

statistical models. This research demonstrates the behavior of the probabilistic

metric across different design alternatives, and shows how this behavior may be

use to guide the design exploration.

1.4 Overview of Dissertation

This chapter starts by pointing out the productivity gap of Figure 1.1, page 1. System-level

design, with its abstraction levels and refinement methodologies, is a solution to the produc-

tivity gap. To further improve system-level design it is necessary to include communication

www.manaraa.com

8

analysis at higher abstraction levels, but this is difficult due to the lack of communication de-

tails at these higher levels. This research addresses this challenge and proposes a statistical

model to overcome the lack of details. The rest of this document is organized as follows.

Chapter 2 presents the current state of the art for communication exploration at the

system-level. An outline of the communication features important for system-level design

and an overview of the statistical model are presented in Chapter 3. Subsequently, Chapter

4 formally introduces the statistical model and shows, through an example, how to derive a

statistical model from simulation data. Following this, Chapter 5 discusses how the statistical

model fits on the overall system-level picture, and how the probability metric is developed to

combine dynamic application behavior and the communication architecture features. Com-

ing full circle a design case study is shown in Chapter 6, putting the statistical model and

probability metric into the context of system-level design. Finally, Chapter 7 covers the con-

cluding remarks.

www.manaraa.com

9

CHAPTER 2. Related Work

System level design addresses the current productivity gap by introducing new abstrac-

tion levels, allowing designers to manage progressively more complex systems. Along with

these new abstraction levels, system level design introduces new design methodologies that,

together with performance estimation, guide the designer from one abstraction level to the

next. This chapter presents the state of the research on system level design, and especially

how communication details are included throughout the design flow.

2.1 System Level Design

In the literature there are two major approaches to system level design, refinement-

based[18] and platform-based[52]. For both design approaches, refinement and platform,

the initial step is to represent the application(s) to be implemented as a specification model.

The specification model is the highest level of abstraction containing the application behavior

and design constraints, but none of the implementation details. The difference between the

two system level design approaches resides in the process by which the specification model

is transformed into a system implementation that meets the design constraints.

The SpecC methodology [23] is probably the best well known example of a refinement-

based design methodology. The SpecC design flow is shown in Figure 2.1. The design starts

with a specification model of the application. The specification model represents the behavior

of the application and includes the design constraints (e.g. power, performance, area, etc). In

the SpecC methodology the specification model is written in the SpecC language[21], other

methods for specifying the system specification include MS Excel sheets[26], XML[47], and

even UML[46].

www.manaraa.com

10

Figure 2.1: SpecC Design Flow

Through the architecture exploration the specification model is refined into an architec-

ture model. This architecture model is the second abstraction level in the SpecC methodology.

At this level the system architecture is modeled as a collection of processing elements (PE)

that are approximate-timed models of the computation elements of the architecture.

The work in [11] show how the approximate-timed PE models are used for rapid design

space exploration. This design space exploration depends on the performance estimates

available at the architecture abstraction level. The research of [9] presents a method for

performance estimation using weight-tables to represent the PE timing characteristics, and

[54] shows how to improve the method in [9] by introducing more accurate low-level aware

metrics. After the system architecture is decided, the next step is communication architecture

exploration.

The communication model is the third abstraction level. In SpecC, the communication

model is the result of the communication synthesis, a process by which the architecture

model is refined into the communication model. The communication synthesis process refers

to the narrow exploration of the communication design space, as shown in Figure 2.2. In

the SpecC methodology the broader search in Figure 2.2 is, in fact, part of the architecture

www.manaraa.com

11

exploration. Other works that do broader communication exploration, as shown in Figure

2.2, are introduced in later sections.

Figure 2.2: Communication Design Space

After the communication synthesis the resulting communication model reflects all the de-

tails of the final system implementation. With the resulting communication model designers

can collect very accurate performance estimates to evaluate the final implementation before

manufacturing. The final step is to transform the communication model to the physical l

implementation, this is done through the manufacturing process.

As explained above, the SpecC design process flows from specification, to architecture,

to communication, and finally to implementation. For communication intensive application,

this refinement order may be a limiting factor. The problem lies in the architecture explo-

ration. For communication intensive applications, the architecture exploration lacks the nec-

essary communication architecture details to provide an accurate design space exploration.

As communication intensive applications, and complex communication architectures start to

dominate embedded system design, the limitation of computation-centric methodologies like

SpecC becomes more apparent.

While SpecC is the most popular refinement methodology, it is not the only one. Another

example of a refinement-based design approach is Transaction Level Modeling (TLM) [10].

While not a methodology, in the strictest sense, TLM borrows a lot of concepts from the

SpecC methodology. Like the SpecC methodology, TLM defines different abstraction levels

and the amount of detail that a model at each level contains. Unlike SpecC, TLM does not

define the refinement processes by which one model is transformed into another.

Instead TLM lets the designer use any refinements he/she may see fit for the current

www.manaraa.com

12

design. Several tools and methodologies became available to fill this gap in TLM. SystemC

[2] is the tool most associated with TLM. SystemC is a C++ library that defines the constructs

needed to build TLM models and includes a discrete event simulator used for executing Sys-

temC models. Other SystemC-based TLM design tools and frameworks include Simics[41],

CoWare[60], and SystemVerilog[56].

The second most common approach to system level design is the platform-based approach[52].

This approach differs from refinement-based in that the specification model is not recursively

refined into an implementation. Instead, the specification model is directly mapped into a

target platform that models all the implementation details. Performance estimates are gath-

ered for the current mapping. If the design constraints are met the process stops, else another

platform is considered, etc.

Metropolis [4] is an example of platform-based design framework. In Metropolis formal

models are used to model each platform separately. The Metropolis methodology defines

how a specification model is mapped into one of the platform models.

All of the tools mentioned above, regardless of the approach, initially trim the design

space evaluating the effects of the PEs and neglecting the communication cost. While this

order may seem intuitive, current research shows the pitfalls of not considering the com-

munication cost early in the design process. The next sections show what researchers are

currently doing to include communication behavior at higher abstraction levels.

2.2 System Level Communication Modeling

In the literature there are two distinct approaches to system level communication mod-

eling. The first approach is to model the application communication behavior and use this

information to guide the communication architecture design. The second approach is to ab-

stract the communication features of the target platform and include these features in higher

level models.

Representative to the first approach Deb et al. [16] evaluate the impact of control and

data flow for DSP applications on system design. Tedesco et al. [59] explore the impact of

www.manaraa.com

13

different traffic models for the same application, on the interconnect design, specifically on

the quality of service (QoS). While this is not the first work to evaluate traffic models for

interconnect design[32, 7, 24, 62], it is the first in evaluating the usefulness of the different

models for a certain application class. Santi et al. [53] is another work on the impact of traffic

on the QoS of the interconnect. Similar to [59], Santi et al. [53] characterize the traffic in

terms of injection rates. What is new in this work is the use of traffic statistics to justify the

need for QoS in the system implementation.

While the previous works used models to represent the applications, traces are also com-

mon on system design. Mahadevan et al. [42] presents a trace-based simulation environment.

Unlike traditional trace-based design exploration, the traces used in this work are annotated

relative timing. This relative timing information is used to map the trace to an architecture

different than the reference design.

In system design, the application characteristics are also used for automated architecture

generation. An example of this automated architecture generation is the two phase synthesis

flow of ×pipes[5]. The first phase is where the system constraints are specified and the

application characteristics are introduced. The second phase is the automated process of NoC

architecture generation. The use of application characteristics for automated architecture

generation is different from previous works, where the application characteristics were used

to directly evaluate some performance metrics. Ho and Pinkston [30] present another work

where the communication characteristics are used for automated on-chip interconnection

network architecture generation. Different from [5], Ho and Pinkston [30] focus only on

well-behaved communication patterns.

Chandraiah et al. [12] show yet another approach to the application communication anal-

ysis. Instead of focusing on how to better represent the application behavior, Chandraiah

et al. [12] addresses the issue of how to build the specification model to better include the ap-

plication communication features. Based on the SpecC methodology[23], this work presents

an automated process to convert an specification model with non-explicit communication

through global variables, into a model with explicit through abstract channels.

The second approach to system level communication modeling is to evaluate the com-

www.manaraa.com

14

munication characteristics of the implementation platform and integrate these characteristics

into the higher abstraction level models. Knudsen and Madsen [34] is one of the earlier

attempts at integrating architecture details into the system design. As part of the LYCOS

co-design framework [27], this work evaluates the timing information and implementation

metrics (e.g. area, and power) for PCI and USB protocols and shows how to use these in-

formation to guide the partitioning step. Most recently, Pasricha et al. [50] takes a different

approach, where instead of including the protocol timing information, the communication

is evaluated in terms of transactions. Pasricha et al. [50] presents a model where (1) the

communication behavior is characterized by the type of transactions, and (2) cycle accurate

figures are know for each transaction type on the target platform.

In a more direct approach to communication architecture abstraction Kumar et al. [36] de-

scribes NoC architecture as a collection of communication resources and computation place-

holders. The communication resources are further abstracted through the use of communi-

cation layers based on the OSI model. This layering approach to communication architecture

abstraction has been adopted by others [57, 6, 25]. A similar approach is found in Coppola

et al. [13], where a C++ library is introduced to facilitate the modeling of layered intercon-

nection networks.

Other works look at the effects that different communication architectures have on an

application or set of applications. For example, Lee et al. [39] evaluate different communica-

tion architectures for an implementation of the MPEG-2 video application. The application is

implemented in three different communication architectures, bus, point-to-point (P2P), and

NoC. This work is the first showing the true impact of these very different communication

architectures in the system performance of one application. In a similar study, Bononi and

Concer [8] evaluate several architectures and compares analytical versus quantitative results

for a ring, 2D mesh, and the new spidergon mesh.

www.manaraa.com

15

2.3 System Level Performance Estimation

While most work in the area of system level design tries to define new models or methods

to include more information into the existing abstractions levels, all of this work aims at

better performance estimation. Performance estimation is key to system level design space

exploration. Simulation is the most common method for system level performance analysis.

Gajski et al. [23] is an example of simulation-based performance analysis. Simulation is

used to introduce the application behavior, and the architecture details are included through

back annotation of the timing details. In Gajski et al. [23] communication is included in the

system performance only after the computation architecture has been explored and chosen.

A similar approach is adopted by Baghdadi et al. [3]. However, Lahiri et al. [38] show the

pitfalls of exploring the computation architecture without considering the communication

cost.

In contrast Dey and Bommu [17] introduce a technique for estimating the communica-

tion performance of concurrent processes during the computation architecture exploration.

Communication layers are defined as the relative times where the concurrent processes syn-

chronize. Performance estimation is done in each layer separately. Another example of

communication-centric performance analysis is Loghi et al. [40]. Loghi et al. [40] presents

a SystemC on-chip communication simulation environment for multi-processors system-on-

chip (MPSoC) architectures. Other examples of communication-centric performance analysis

may be found in Kim et al. [33] and Fummi et al. [22].

In this research, a probabilistic approach is proposed for system level performance esti-

mation. However, this research is not the first to propose such an approach. The works of

Kumar et al. [35] and Sonntag et al. [58] are two good examples of probabilistic approaches

to system level performance estimation.

Kumar et al. [35] evaluates the case where multiple application content for shared pro-

cessing elements, and probability is used to estimate the system delay due to the contention

for the shared computation resources. To use the probabilistic approach of [35] it is neces-

sary to know (1) the application execution times on the processing elements, and (2) which

www.manaraa.com

16

application fractions content for the shared computation resources. Through the approach

described in [35] it is possible to compute better than worst case estimates in a fraction of

the time required to simulate the cycle-accurate design. The drawback is the amount of in-

formation required for this approach, since it is necessary to know the application execution

times on the shared resources. Also, this method does not account for the communication

overhead between the processing elements, or shared communication resources.

Another common probabilistic approach to system level performance estimation is queu-

ing modeling, as it is done in SystemQ[58]. SystemQ is a SystemC queuing-based simulation

environment. The different abstraction levels are defined through queuing theory. Different

to previous approaches SystemQ does incorporate communication effects into their design

environment.

In SystemQ, separation of concerns[61] is defined along three orthogonal axes: function,

structure, and communication. Functional refers to the algorithmic behavior, structural refers

to the computational architecture, and communication refers to the communication architec-

ture. A queuing model is built to represent the system at an abstraction level. Refinement

steps are defined to transform the queuing model by adding functional, structural, and com-

munication details.

A system is refined throughout four levels of abstractions, named setup 1 through 4. Each

setup adds details across one or more of the orthogonal concerns defined above.

[Setup 1] This is the highest level, most abstracted, and the entire system is modeled as

a queuing network of two queuing systems, a producer and a consumer. Average

service delays, derived from expert knowledge, are used in this model.

[Setup 2] This setup is generated through structural refinement of Setup 1. In Setup 2

each queuing system of Setup 1 is replaced by queuing network that reflects the

structural details of the implementation platform.

[Setup 3] Functional and communication refinements are applied to generate Setup 3.

The service time in this setup is determine for variable size packets, instead of us-

www.manaraa.com

17

ing average packet length as in Setup 2. Communication is refined to account for

mean arbitration and contention delays in the target communication architecture.

[Setup 4] This last setup is the result of further structural refinement to Setup 3. Setup

4 includes shared components between the original producer and consumer.

This chapter showed the current state of the system level design research. In particular, it

showed the trends on system level communication analysis, and the approaches for commu-

nication performance estimation. Subsequent chapters will show the details of the proposed

approach.

www.manaraa.com

18

CHAPTER 3. Probability as a System Metric

This research proposes the use of probability as a high level estimator for system perfor-

mance. The use of probability as a metric stems from the lack of communication details at

higher abstraction levels. This chapter introduces the concepts necessary to understand the

development and use of the system probability metric.

3.1 Communication Architecture Design Alternatives

To discuss system performance estimation it is necessary to first understand the commu-

nication architecture design alternatives and their effects on the systems performance and

cost. Intuitively, as the system model is refined from specification to implementation rela-

tions between the design alternatives, system performance, and implementation cost become

more concrete. Performance estimation is more accurate at lower abstraction levels due to

availability of implementation details. This section presents the relations between a subset

of communication architecture design alternatives and the system performance. Whereas,

the next section shows why it is impossible to directly measure the effects of these design

alternatives on system performance at higher abstraction levels, justifying the need for the

proposed probability estimator.

At higher levels of abstraction the interconnection network may be seen as a shapeless

communication medium. Shown in Figure 3.1, is an abstract view of the interconnect net-

work at the specification and architectural abstraction levels. From a communication point

of view, the system is composed of nodes, PEs in the figure, and an interconnection network

that is subdivided into links or communication channels. Each node in the system is capable

of sourcing or sinking network messages. Each node, also, contributes to the interconnection

www.manaraa.com

19

network by performing routing duties. That is, a node will route any message for which it is

not the source or sink. Figure 3.1 is meant to show the lack of communication details found

at these higher abstraction levels. The questions then are, what communication details are

important at these abstraction levels, and what is the best way to include these communica-

tion details at higher levels? In other words, what is the best method for giving shape to the

interconnect network model of Figure 3.1?

Figure 3.1: Abstract Interconnection Network

The first step is to assess the design alternatives available for the communication ar-

chitecture. At higher abstraction levels, the communication architecture design space is a

three-dimensional space along topology, routing, and flow control. All of these communica-

tion architecture features have direct influence on the system performance. The following is

a list of the design alternatives and their broader effects on system performance and cost.

• Topology is the static arrangement of nodes and links. The topology has a direct effect

on the throughput and latency of the interconnection network, as it determines the node

degree and defines all possible paths on the network. The topology cost is reflected in

the number and complexity of communication components, and in the density and

length of the interconnection links.

• Routing defines the selection policy for choosing an specific path from those given by

the network topology. While in a lesser degree than topology, routing still has a direct

www.manaraa.com

20

impact on the interconnect throughput and latency. Routing costs are measured in

node complexity.

• Flow Control represent the policies for resource allocation. Flow control is probably the

feature that has the biggest dynamic impact on the communication performance, since

it handles contention resolution. As for routing, the cost of flow control implementation

is also reflected in the node complexity.

3.1.1 Communication Performance

Before continuing, it is necessary to define how the communication performance is mea-

sured and analyzed. Communication through the interconnection network is done exchang-

ing messages. A message is the largest logical unit of data that is delivered from source to

destination. To traverse the interconnect network, a message uses resources: links, buffers,

control logic, etc. These messages may be arbitrarily long, depending on the communica-

tion needs of the participating nodes, therefore it is not convenient to allocate the network

resources to the messages. Instead, messages are divided into fixed length packets.

A packet is the basic unit of routing. They have a fixed maximum length, and are sub-

divided into header and payload. The packet header is used to determine the route taken

by the packet from source to destination. Similarly to how messages are split into packets,

packets may be further divided into flow control digits, or flits. Figure 6.1 shows a network

message and all of its subdividing units. Flits are the basic unit of bandwidth and storage

allocation, and they carry no routing information. Thus, all flits in a packet must follow the

same path from source to destination.

Depending on its position on the packet, a flit may be a head flit, body flit, or tail flit. A

head flit is the first flit of a packet and carries the packet routing information. All bandwidth

and storage allocation for the packet is performed by the head flit. The head flit is followed

by zero or more body flits and one tail flit. The tail flit is the last flit of the packet and is

most commonly used for resource deallocation. Finally, a flit may be divided into physical

transfer digits, or phits. A phit is the unit of information that is transferred across a channel

www.manaraa.com

21

in a single clock cycle.

Figure 3.2: Network Message

Knowing how the network message is decomposed for traversing the network, it is pos-

sible to define the network performance. The most basic measurement of performance is

latency. The latency of a network is the time required for a packet to traverse the network,

from the time the head of the packet departs the source node to the time the tail of the packet

arrives at the destination node. From this definition of latency, it is clear that the two major

components of latency are: the path a messages takes from source to destination, and the

size of the message. The message path is measured in hops, or routing nodes. These are the

nodes in between the messages source and destination. The number of hops, or path length,

is determined by the network topology and the routing protocol. As the message travel

across the network, it allocates resources across its path. The amount of resources needed by

a message is determined by the message length and the flow control policies.

The second most common network performance metric is its throughput. While latency

is a measurement of the time needed by a message to travel the network, while throughput

measures how quickly the interconnection network process a message. Formally defined

as the data rate, in bits per cycle, that the network accepts per input port, throughput is

a property of the entire network and depends on routing and flow control as much as on

topology.

www.manaraa.com

22

To finish the discussion on the communication performance it is necessary to include

bandwidth. Bandwidth measures the capacity of the communication medium to move data,

and it is a function of the width and speed of the medium. Width refers to the number of

bits that may be transmitted in parallel. The width is always the same as the size of a phit.

Speed is the maximum frequency at wich this bits may be switched. This switching speed

is a property of the communication medium. Having introduced the communication perfor-

mance metrics, the next step is to look at how the communication performance affects the

overall system, and how these performance metrics may be investigated at higher abstraction

levels.

3.1.2 System Performance

Intuitively the system performance is affected by the interconnection network throughput

and latency. The rest of this chapter only deals with latency, but similar analysis may be

done for throughput. In system design the important issue is the relation between the design

alternatives, the system performance, and the implementation cost. In the case of latency,

and for the sample system of Figure 3.3, a well known relation between the overall system

performance and the lower level communication metrics is the path latency.

Figure 3.3: 3x3 Mesh Interconnection Network

Path latency, Tn, is defined in Dally and Towles [14] as

Tn =
n

∑
i=0

(
tir +

L
BW

)
(3.1)

www.manaraa.com

23

Where n is the number of nodes between source and destination, and it is as much influenced

by topology as routing. L represents the size of the packet in flits. L is determined by the

flow control policy. BW is the bandwidth of the communication channels. The term L/BW

is know as the travel time, tt. Finally, tir, known as routing time, refers to the time a packet

resides in an intermediate node in the network. Routing time is a function of the topology,

routing, flow control, and even traffic. For the simple example of Figure 3.3, let’s consider

Figure 3.4: Typical Routing Flow

the typical routing flow shown in Figure 3.4. This routing flow allocates resources at the

flit level. For a common implementation of the routing flow of Figure 3.4 routing time (tr)

may be between 40 to 50 cycles, depending on the number of available output channels and

buffers[29].

From Figure 3.4 it is clear how the design alternatives on topology, routing, and flow

control have a direct effect on tir. For example, topology and routing determine the amount

of time a head flit spent in the Routing process. Further, the time required for switching

arbitration is a function of flow control as well as topology, routing, and current network

load. Finally, the time a flit waits for buffers to become available depends on flow control

www.manaraa.com

24

and load.

3.2 Communication Modeling at Higher Abstraction Levels

This work focuses on performance estimation at the highest levels of abstraction. These

abstractions levels are characterized by approximate-timed computation, and un-timed (or

approximate-timed) communication. This section presents the key issues that make commu-

nication performance estimation an interesting and significant problem at higher abstraction

levels, and provides an overview of how probability may be used as a performance estimator.

3.2.1 Performance Estimation for Un-timed Communication Models

As shown in section 3.1.2 the performance for the sample system of Figure 3.3 is de-

termined by the path latency of equation 3.1. This section presents how the different com-

ponents of equation 3.1 are found at higher abstraction levels where communication is un-

timed.

As defined by Cai and Gajski [10], a model with un-timed communication is character-

ized by concurrently executing processing elements and communication through abstract

channels. These channels are message passing channels, which only represent data transfer

or synchronization between processing elements. No timing information about the commu-

nication architecture is included in either the processing elements or the channels.

Using the previous definition, equation 3.1 is evaluated for the un-timed communication

model of the sample system in Figure 3.3. On each node a packet is delayed by the routing

time, tir, and the travel time, tt =
L

BW . This example focus on routing time, and it is assumed

that L and BW are known.

Routing time is determined by the implementation of the routing flow (Figure 3.4, on

page 23) in the routing nodes. For the case of un-timed computation/communiation models,

only the behavior of the routing flow is included. This means that whenever a packet arrives

at a routing node the routing decision is made instantaneous. Moreover since a packet is

never held by the routing node there is never contention for the node resources by other

www.manaraa.com

25

packages.

From the previous analysis, it is clear that, tir = 0 for the un-timed model. Unfortunately

this reduces path delay to

Tn =
n

∑
i=0

(
L

BW

)
= H

(
L

BW

)
which is clearly not a useful relation for accurate performance estimation. Further, the num-

ber of nodes in the path, H, may change depending on dynamic effects due to traffic.

Therefore, to proceed with the system design it is necessary to include timing details of

the routing implementation to the higher abstraction levels. The proposed solution is to use

a probabilistic timing model, or p-timed model. Contrary to the typical approximate-timed

models, a p-timed model does not use back annotation of cycle time characteristics to include

timing information. Instead a p-timed model relies on a probabilistic description of the target

implementation.

For the current example a good probabilistic description of the routing flow of Figure 3.4

is a discrete uniform distribution. Routing time may be expressed as a random variable of

the form

tr ∼ U(45, 50), or

tr ∼ U(0, 5), (3.2)

Figure 3.5: Node P-Model

www.manaraa.com

26

since only the absolute difference is important. A refined node p-model is shown in Figure

3.5. With the definition 3.2 in hand the next step is to compute the path delay of equation

3.1.

Since L
BW is assumed constant for the current analysis, the only part left to evaluate is

path length H. For better system performance estimation, it is necessary to account for the

dynamic behavior of H. That is, it is necessary to account for the effects of the network load

and flow control policy on the path length.

Through simulation of the approximate-timed computation and p-timed communication

model it is possible to determine a set of characteristic paths {H0} for a given traffic. Figure

3.6 shows the simulation model. The final step to estimate the system performance is to

combine the p-timed model with the set {H0} to generate the probabilistic metric.

Figure 3.6: System Model

3.2.2 The Probabilistic Metric

Section 3.2 presented an overview of the p-model for a sample design, and how simula-

tion may be used to include the dynamic effects of traffic. In this section everything comes

together to generate the final performance estimate, i.e. probabilistic metric.

The first step is to partition the path set {H0} into smaller sets {h0}. Where {h0i} is a set

of paths, pi, such that:

H0 = {h01h02 . . . h0n},
n⋂

h0i = ∅,

h0i = {p1 p2 . . . pk},
k⋂

pi 6= ∅,

Pc(pm, pn) > 0.

www.manaraa.com

27

Each path, pi, is the characteristic path for a given packet, and Pc(pm, pn) is the probability

that the packet in path pm collides with the packet in path pn. Therefore, only paths carrying

packets that have a probability of collision greater than zero (Pc > 0) belong to the same set

(h0i).

Given packets M and N with respective paths pm and pn, shown in Figure 3.7, collision

will occur if both packets share a link, shown in green on the figure, and each packet requires

the shared link at the same time T. Packet M uses the shared link during the time interval

[Tm, Tm + τ], where Tm is given by

Tm = tm1r + tm2r , (3.3)

τ is a constant, and tm1r and tm2r represent the routing times for nodes 1 and 2 respectively.

From the analysis in section 3.2.1 the routing time follows a discrete uniform distribution,

i.e.

tm1r = tm2r = tr ∼ U(0, 5), (3.4)

and with equations 3.3 and 3.4 it is possible to compute the probability of collision Pc(pn, pm) =

P(TM = TM) = 1/7, for τ = 0.

Figure 3.7: Paths pm and pn that share one channel.

The same analysis is done through the paths of {h0i} to compute the probability of col-

lision Pc(h0i). The process is then repeated for every the set, {h0i}, in {H0}. This produces

a probability mass function which represents the system at the current level of abstraction, a

probabilistic metric.

This section presented a sample system at the un-timed communication abstraction level,

discussed the effects of routing on the system performance, and showed the limitations for

www.manaraa.com

28

performance analysis at this high abstraction level. To overcome these limitations a proba-

bilistic approach is proposed. A probabilistic model is presented to capture the architecture

features, particularly routing, and a probabilistic metric is derived as a high level perfor-

mance estimator. The probabilistic metric is derived using the probabilistic representation of

the architecture features, and simulation to include the system dynamic behavior.

3.3 Probability Metric for System Level Design

Previous sections presented the probabilistic metric for an specific example. This section

shows how this metric may be used for system level design.

Figure 3.8: System Level Exploration

Recalling from section 3.2.2, it is possible to compute a probabilistic metric for a set of

architecture options and a given traffic pattern. Figure 3.8 shows how different p-models

representing certain architecture details yield different probabilistic metrics. The resulting

probabilistic metric becomes a representation of the chosen architecture features and their

interaction with the traffic pattern.

System design now continues by comparing the probabilistic metrics for different model-

traffic combinations, P1
c through PN

c , in Figure 3.8. The key to this probability driven system

design is the relation between the high level probability of the model and the low level

performance of the implementation, as show in Figure 3.9.

This relation between probability and performance is one of fidelity. That is, there is a

www.manaraa.com

29

Figure 3.9: Model to Implementation

relation for comparing P1
c , P2

c , and P3
c , such that

P1
c > P2

c > P3
c =⇒ Q1 > Q2 > Q3. (3.5)

The derivation of this relation is not trivial and may be dependent on the architectural fea-

tures under testing.

This chapter introduced the major limitations for performance estimation at the un-timed

communication abstraction level. A probabilistic approach to system modeling is proposed

to surmount these limitations, and through an example it was shown how the proposed ap-

proach may be used for performance estimation by generating a probabilistic metric. Lastly,

it was shown how the probabilistic metric may be used to guide the system level design, and

the importance of fidelity between the probability metric and the low level performance. The

next chapters show the methods and tools by wich probability models were developed for

several routing schemes found in typical embedded systems.

www.manaraa.com

30

CHAPTER 4. Statistical Model

The goal of system-level design is to provide tools to measure the impact that low-level

design decisions have on the system performance. In the case of the communication design

alternatives, system performance is affected by the communication throughput and latency.

The work presented in here shows how to develop good statistical models to capture the

low-level latency relations and bring this information into the realm of system-level design.

4.1 Modeling Communication Components

The key modeling issue in system-level design is the relation between the design alter-

natives, performance metrics, and implementation cost. For latency a well known relation is

the path latency[14]. For a path with n nodes and k channels, the path latency, Tn, is defined

as:

Tn =
n

∑
i=0

tir +
k

∑
j=0

tjt (4.1)

Equation (4.1) has two components, routing time and traveling time. Routing time, tr, refers

to the time a packet resides in an intermediate routing node. Traveling time, tt, is the time

a package utilizes the communication channel between two nodes, and can be expressed in

terms of the packet size and channel bandwidth.

Equation (4.1) shows how the design alternatives on topology, routing, and flow control

have a direct effect on latency through their impact on routing and traveling time. For

example, for a typical implementation of deterministic routing with wormhole flow control,

topology and routing greatly affect routing time for the head flit at every routing node. It is

shown in [29] that routing time may vary between 40 to 50 cycles, depending on the number

of available output channels and buffers. In fact, most components of Equation (4.1) are

www.manaraa.com

31

the result of one or more design alternatives. The path length, n, is as much influenced by

topology as by the routing protocol. Routing time, tr, is a function of the topology, routing,

flow control, and even traffic. Traveling time, tt, is heavily influenced by the packet size

which is determined by the flow control.

Path latency provides a starting point for evaluating the relations between communication

design alternatives and system performance. However, path latency, routing, and traveling

time are still low level performance metrics. For these metrics to be meaningful at the system-

level, it is necessary to provide models and methods to estimate the performance impact

system-level design decisions have on these metrics.

Statistical models are widely used in the networking and communication research fields.

For communication components, statistical models are most suitable for bridging the gat

from the low-level implementation metrics to the system-level. Based on random variables,

statistical models capture the behavior of communicating processes, and along with statistical

methods, can provide the tools necessary to move the communication exploration into the

higher levels of abstraction.

Using Equation (4.1) as the basis for this research, the challenge is how to properly model

the path latency using random variables. The two candidates to model as random variables

are, routing time (tr) and traveling time (tt). It is useful to see how these components fit in

the system. Figure 4.1, on page 32, shows the relation between the routing and traveling

times, and the communication components on the system model.

From Figure 4.1 it is clear that routing time captures the system design alternatives de-

fined as part of the node architecture. These alternatives include number of IN/OUT ports,

buffer sizes, routing scheme implementation, flow control implementation, among others.

On the other hand traveling time encapsulates the design alternatives related to the commu-

nication medium, including , but not limited to, bandwidth and packet size. Also present in

Figure 4.1 is the dynamic phenomena, or traffic.

While random variables may properly model the characteristics of the routing and trav-

eling time; these are not sufficient for system-level design. Along with the new statistical

models, there must be methods and tools to capture both the static design alternatives and

www.manaraa.com

32

Figure 4.1: Communication Components in System

the dynamic phenomena due to load changes. The rest of this section presents the methods

for developing the a statistical model for the particular case of routing time.

4.2 Developing a Statistical Model

Modeling the routing time using an statistical model can provide the abstraction nec-

essary to bring the communication information into the higher abstraction levels of system

design. However, the process for developing such statistical model is not trivial. The initial

challenge is to determine the behavior of routing time. To this end, I’ve set up the following

system:

• 64 nodes arranged in an 8x8 torus,

• XY deterministic routing, and

• wormhole flow control

This system was developed in SystemC using a modified version of the NOXIM[19] simula-

tor.

The characteristics of these systems were carefully selected. Deterministic routing is still

the most commonly routing type used [37, 43, 44, 31]. The advantages of deterministic

www.manaraa.com

33

routing are many, simple design and analysis, ease of implementation, low latency for well

behaved loads, etc. Likewise, wormhole flow control dominates the NoC architectures[51,

44, 15, 55]. Flit-based flow control schemes, such as wormhole, are popular because they

provides a level of data management that is ideal for the kind of transfers and resource

constrains commonly found in today’s NoC.

Two traffic loads are considered: random, and hotspot. The random traffic uniformly

distributed across all destinations, and is injected into the system with a poisson distribution

at a given rate. Hotspot traffic is simulated using a hotspot that is 20% of the system node.

Therefore, 80% of all nodes are sending to the other 20%. Just like in the case of random

traffic, the packets during hotspot simulation are injected following a poisson distribution.

Figure 4.2: Routing Time Distribution and Fitting for Random Traffic

Figure 4.2 shows the empirical distribution of routing time for the random traffic case.

This distribution is the basis for the random model. As seen in Figure 4.2, routing time in

this system follows an exponential distribution. Several characteristics of this distribution

www.manaraa.com

34

are worthy to point out:

1. One cycle is the most frequent latency.

2. About 80% of the area of Figure 4.2 lay within the first 6 cycles.

3. The average simulation path latency is 73.99 cycles/flit.

4. The average simulation path length is 5.3 nodes.

Path latency is computed as the end-2-end delay of the packet, as it travels from source to

destination.

The most common method for developing random models from empirical data is to fit

the data to a known distribution. Table 4.1 shows the average routing time from simulation,

along with the mean, standard distribution, and mean square error (MSE) for an exponential

fitting of the simulation data for random traffic. This table confirms what can be seen graph-

ically in Figure 4.2, that an exponential fitting of the empirical distribution does not produce

a good model.

Table 4.1: Exponential Fitting, XY Routing, Random Traffic

Traffic Routingave Mean Std. Dev. MSE
Random 7.85 6.85 46.93 0.2193

The problem with the exponential fitting is that it can’t model the behavior of the routing

time for the first data points. The routing time distribution decreases very quickly during

the first three data points, however it still has a long and narrow tail. These properties

are difficult to match with an exponential fitting alone. The solution is to use a mixed

distribution.

4.3 A Mixture Model

A known good model for systems characterized by long-tail exponential, such as the sys-

tems presented here, is the mixture model. This section presents the steps I took to develop

mixture models for our system under random and hotspot traffic. Mixture models[20] are of

www.manaraa.com

35

the form

fX(x) =
n

∑
i=0

ai fYi(x) (4.2)

Where the density functions fYi(x) are the mixture components, and ai are the mixture propor-

tions. With the constraints that 0 ≤ ai ≤ 1 and a1 + a2 + · · ·+ ai = 1.

To develop the mixture model the routing time distribution of Figure 4.2 is separated in

two sets, or windows. For a simulation set of n data points, the first window contains the

data points from 0 to w; and the second set has the rest of the data points, from w + 1 to n.

These two sets, (0, w) and (w + 1, n), become our mixture components. Figure 4.3 shows the

mixture components as they are derived from different windows. Based on this analysis our

mixture model has two parameters:

1. the mixture proportion (a) from equation 4.2, and

2. window size (w).

The mixture proportions are determined using equation 4.3. Trave is the average routing time

from simulation, and µw, µw+1 are the means of the mixture components fY0(x) and fY1(x),

Figure 4.3: Communication Components in System

www.manaraa.com

36

as shown in Figure 4.3.

Trave = µw ∗ a + µw+1 ∗ (1− a). (4.3)

Window sizes, on the other hand, are not as clearly defined as the mixture proportions.

Different window sizes produce different mixture models. Therefore, it is necessary to deter-

mine the window size that produces the best mixture model. To determine the best window

size we use the mean square error (MSE) and measured the error between a mixture model

for a particular window to the empirical distribution from simulation.

Figure 4.4 shows the MSE as a function of the window size. The blue horizontal dotted

line labeled Exp. Fitting MSE represents the MSE of the exponential fitting of Figure 4.2, and

the red plot labeled Mixture Proportion show the different mixture proportions as the window

size increases. There are three distinct sections in Figure 4.4: w ≤ 6, 6 < w ≤ 8, and w > 8.

The first section, w ≤ 6, is characterized by the largest MSE reduction rate. Knowing that

about 80% of the routing time distribution is stored on the first 6 cycles, it is expected that the

MSE would decrease significantly faster as these data points are integrated into the fY0(x)

mixture component. After this point, w = 6, MSE decreases at a lower rate because any

Figure 4.4: MSE Behavior Across Window Sizes (Random)

www.manaraa.com

37

more data moved into fY0(x) adds significantly less information. It is important to note that

already with 80% of the routing time distribution in fY0(x), the mixture model with w = 6

has an MSE lower than the MSE from the exponential fitting of Figure 4.2.

On the second section, 6 < w ≤ 8, the MSE continues to decrease, but at a lower rate.

MSE reaches a minimum at w = 8. At w = 8, almost 85% of the routing distribution is now

in fY0(x). The resulting mixture model at w = 8 is

fTR(x) = a0 fY0(x) + a1 fY1(x), where

fY0(x) ∼ Exp(µ = 1.4120), a0 = 0.9961

fY1(x) ∼ Exp(µ = 21.428), a1 = 1− a0.

Looking at the mixture proportions a0 and a1, it is clear why this mixture model produces a

better MSE. It gives a higher weight (0.9961) to the mixture component representing almost

85% of the routing time distribution, a0 fY0(x).

The last section of Figure 4.4, w > 8, is characterized by an increase in MSE. This last

section represents when the information on the tail of the empirical distribution starts to

impact the mixture model. Finally, as the window size increases, w→ ∞, our mixture model

becomes the same as an exponential fitting over the entire simulation set.

In summary, the MSE analysis above shows that using mixture models it is possible

to find a better fit than simply fitting the simulation data to an exponential distribution.

Furthermore, Figure 4.4 shows that for all windows sizes 6 < w < 35, the mixture model

has a lower MSE than the exponential fit of Figure 4.2. Graphically the mixture models for

windows w[6 8 20] are shown in Figure 4.5.

4.4 A Communication-Centric Modeling Methodology

As a matter of example, the previous section showed how to derive an statistical model

from simulation data. This section outlines the steps taken to develop the statistical model.

These steps are at the core of this communication-centric modeling methodology, and are fun-

damental to produce system level communication-based performance estimation at higher

levels of abstraction.

www.manaraa.com

38

Figure 4.5: Mixture Models for Random Traffic

At the center of the statistical modeling presented in this chapter is the mixture distribu-

tion. Given by equation 4.2, shown here again

fX(x) =
n

∑
i=0

ai fYi(x),

the mixture distribution is described by its mixture components { fYi(x)} and its mixture

proportions {ai}. The modeling methodology are the steps necessary to produce the mixture

components and proportions from the simulation data.

Given an empirical distribution the steps are as follow:

1. Partition the empirical distribution into two sets. For a distribution with n frequency

points, the first set contains the frequencies from [1, . . . , i], and the second set from

[i + 1, . . . , n]. Figure 4.3, on page 35, show two such partitions.

2. Independently fit each set.

• In the example on Section 4.3, each partition was fitted to an exponential distribu-

tion.

www.manaraa.com

39

3. Determine the mixture proportions {ai} for the given partition.

• For the ongoing example, the proportions where determine by solving the set of

equations:

µmixture = a1 ∗ µ fY1
+ a2 ∗ µ fY2

,

a1 = 1− a2,

and setting µmixture to the average routing delay from simulation.

4. Given the mixture components and proportions, compose the mixture distribution for

this partition { fXi(x)} and compute the mean square error between the ith mixture and

the empirical distribution.

5. Repeat steps 1 to 4 for each i = 2 ≤ i ≤ n, and compute the mean square error for each

resulting mixture model.

6. The best mixture is the one with components and proportions which yields the lower

mean square error.

Resulting from this methodology is an statistical model based on the mixture distribu-

tion, that is completely described by its components and proportions. This model replaces

the communication component, router for the case of the example of Section 4.3, for all sub-

sequent simulations and exploration of the system at the higher abstraction levels. While

section showed the derivation of the methodology, the next section shows how the method-

ology is apply to generate a new model.

4.5 Hotspot Traffic Model

Sections 4.2 and 4.3 evaluated the routing behavior for the system when loaded with

random traffic. Random traffic is a good basic case that shows the behavior of the system

for a load that is uniformly valanced across all node. However, random traffic may not

capture the desire application behavior correctly. Another useful traffic model that may

better represent the desire application is hotspot traffic.

www.manaraa.com

40

For the case of hotspot traffic 20% of the system was chosen as the hotspot. That is, 80% of

all the nodes on the system will chose the same 20% area or the system as their destination.

The nodes inside the 20% hotspot are chosen at random, and are all equally likely. This

hotspot behavior is capable of recreating the type of bottle necks commonly found in audio

and video encoding/decoding applications.

Figure 4.6: Routing Time Distribution and Fitting for Hotspot Traffic

Figure 4.6 shows the empirical distribution of the routing time for hotspot traffic. When

using hotspot traffic the shape of the routing time distribution is very similar to the case with

random traffic, with some key differences. (1) The tail of the routing distribution is longer

for hotspot. (2) Along with a longer tail, the average routing time is also higher than that of

the random traffic, about three times. Table 4.2 shows the routing average for random and

hotspot traffic for comparison. Perhaps the most noticeable difference from random traffic is

that for hotspot traffic the routing time distribution seams to be more spread out across all

cycles for hotspot. While the first cycle still dominates the distribution its frequency reduced

from 0.7, for the random traffic, to 0.4, shown in Figure 4.6.

Following the methodology outlined in Section 4.4, the mixture model for this traffic

is found evaluating the MSE behavior. Figure 4.7 show the MSE curve for the different

www.manaraa.com

41

Table 4.2: Exponential Fitting, XY Routing

Traffic Routingave Mean Std. Dev. MSE
Random 7.85 6.85 46.93 0.2193

Hotspot 20.94 19.94 397.47 0.0422

partitions on the empirical distribution of Figure 4.6. The mixture model for hotspot with

minimum MSE has the parameters:

fY0(x) ∼ Exp(µ = 2.5660), a0 = 0.9360

fY1(x) ∼ Exp(µ = 23.162), a1 = 1− a0.

Graphically the mixture models for windows w[10 14 30] are shown in Figure 4.8. As expected,

for hotspot traffic having more information in the tail of the empirical distribution the weight

given to fY0(x) was reduced from 0.9961, for random traffic, to 0.9360.

Figure 4.7: MSE Behavior Across Window Sizes (Random)

This chapter formally presents an statistical model which captures the communication

features to raise them to higher levels of abstraction. The model is based on a mixture

distribution and takes the shape of the empirical distribution extracted form simulation. It

was shown how a mixture distribution better models the routing behavior for random and

www.manaraa.com

42

Figure 4.8: Mixture Models for Random Traffic

hotspot traffic, compared to a simple exponential fit. Further, and more importantly, this

chapter outlines the steps used to developed these mixture models. System level designers

may examine this chapter and follow the steps delineated here to develop similar models for

the significant communication features on their designs.

www.manaraa.com

43

CHAPTER 5. Probability Metric

Chapter 4 demonstrated how to derive a mixture model from simulation. These mixture

models capture the communication architecture characteristics as they behave in a loaded

system. For an example loaded under random traffic it was shown that a mixture model

with two components better represents the routing element, than a simple exponential fit

over the empirical distribution. In general, a mixture model with two components is of the

form

fTR(x) = a0 fY0(x) + a1 fY1(x). (5.1)

Furthermore, through MSE analysis it was found that a good mixture model for a system

with XY routing, has mixture components given by

fY0(x) ∼ Exp(µ = 1.4120), a0 = 0.9961

fY1(x) ∼ Exp(µ = 21.428), a1 = 1− a0.

The mixture model fTR(x) becomes the representation of the routing elements on any fu-

ture high level models that include the same communication architecture. Different mixture

models are derived to represent different architecture alternatives. Much useful information

may be gathered from the mixture model directly; e.g. the mean routing time. However, the

statistical mixture model becomes exceptionally useful when exposed to dynamic loads.

For instance, given the application communication characteristics, it is possible to use the

mixture model to evaluate the collision behavior of a system at the highest abstraction level.

Knowing that the routing time has a distribution fTR(x), it is possible to combine the appli-

cation communication characteristics with the mixture model to compute the probability of

collision. The collision distribution represents how the entire system reacts to the dynamic

www.manaraa.com

44

communication behavior of the application, and directly relates to the system performance.

Dynamic analysis, such as the one for collision, are possible with mixture models because of

the tools and methods available to statistical models.

5.1 Path Analysis

To find the probability of collision the first step is to look at the path a packet takes from

source to destination. Figure 5.1 shows two packets and the path they take from source to

destination.

Figure 5.1: Path for Packet A (red) and B (blue)

Packet A, red in Figure 5.1, with its source at node N1a has a path of four nodes. Packet

B, blue in Figure 5.1, has five nodes on its path and its source at node N1b. As shown in the

figure, both paths share two nodes and one link.

The proposed model only considers the shared links, and not the shared nodes. The

assumption is that there are enough resources at the node to route the packets in parallel,

while access to the communication medium is mutually exclusive. From the point of view of

packet A, the shared link is the 1st link, and from packet B’s point of view, it is sharing the

2nd link. Hence, the shared link is classified Type 1|2.

Table 5.1 show some sharing types, and their frequency, for an 8x8 XY/Wormhole system

under random traffic. These sharing types are derived from a high level simulation using the

www.manaraa.com

45

mixture model fTR(x). Using the given classification and the definition of TR from equation

5.1, it is possible to find the time when packet A and B require the shared link.

Table 5.1: Frequency of sharing types, from simulation.

Type Frequency

1|2 4390

2|3 3571

2|2 2246

3|3 1879

Packet A starts using the shared link at time TA, similarly, TB is the time for packet B.

Taking the travel time, TT, from Figure 4.1 (page 32) as constant, packets A and B use the

shared link during the time intervals

[TA, TA + TT] and [TB, TB + TT]

respectively. For a shared link of Type 1|2 the start times are given by

TA = TR1a , and (5.2)

TB = TR1b + TT + TR2b . (5.3)

Where, TR1a , TR1b , and TR2b are identically distributed independent random variables with the

PDF of the form of equation 5.1.

5.2 Probability Computation

To compute the probability of collision it is necessary to define the events for which there

would be collisions. There are three events that can produce a collision between packet A and

B. Figure 5.2 shows all three cases where packets A and B may collide. The first event, Figure

5.2a, represents when packet B requests the shared link while it is being used by packet A.

The second event, Figure 5.2b, is the complement of the first case. The final event, Figure

5.2a, illustrates when both packets A and B request the link at precisely the same time. From

this discussion the probability of collision is defined as:

Pc = P(0 < |TB − TA| < TT ∪ TA = TB).

www.manaraa.com

46

(a)

(b)

(c)

Figure 5.2: Collision Events

Since TA and TB are defined as continues random varaible

P(TA = TB) = 0.

Therefore, in general the probability of collision is given by

Pc = P(0 < |TB − TA| < TT). (5.4)

Finally, combining equations 5.2, 5.3, and 5.4, the probability of collision for sharing Type 1|2

of in Figure 5.1 is

P1|2
c = P(−TT < (TR1b + TR2b + TT)− TR1a < TT)

= P(0 < TR1a − (TR1b + TR2b) < 2TT). (5.5)

Similarly, Table 5.2 shows the basic probability equations for the sharing types of Table 5.1.

www.manaraa.com

47

Table 5.2: Frequency of sharing types, from simulation.

Type Pc

1|2 P(0 < TR1a − (TR1b + TR2b) < 2TT)

2|3 P(0 < (TR1a + TR2a)− (TR1b + TR2b + TR3b) < 2TT)

2|2 2 ∗ P(0 < (TR1a + TR2a)− (TR1b + TR2b) < TT)

3|3 2 ∗ P(0 < (TR1a + TR2a + TR3a)− (TR1b + TR2b + TR3b) < TT)

5.2.1 Probability of the Difference

The probability of equation 5.5 is the difference of a combination of random variables

with mixture distributions. This probability is easy to find by defining Z = TR1a − Y, and

Y = (TR1b + TR2b). The first step is to find the PDF of Y. Given the distributions of TR1b and

TR2b ,

fTR1b
(u) =

a0

µ0
e
−u
µ0 +

a1

µ1
e
−u
µ1

fTR2b
(v) =

a0

µ0
e
−v
µ0 +

a1

µ1
e
−v
µ1

the new distribution of Y is given by the convolution

fY(y) =
∫ y

0
fTR1b

(u) ∗ fTR2b
(y− u)du

=
2a0a1

µ0 − µ1

(
e
−y
µ0 − e

−y
µ1

)
+

(
a0

µ0

)2

e
−y
µ0 y +

(
a1

µ1

)2

e
−y
µ1 y.

To test that fY(y) is a propre PDF, note that∫ ∞

0
fY(y)dy = 1

Finally, the distribution of Z is found through a common transformation. Defining

W = TR1a + Y

Z = TR1a −Y,

then the joint distribution f(W,Z)(w, z) is

f(W,Z)(w, z) = fTR1a

(
w + z

2

)
fY

(
w− z

2

)
∗ abs


∣∣∣∣∣∣∣

∂TR1a+Y
∂TR1a

∂TR1a+Y
∂Y

∂TR1a−Y
∂TR1a

∂TR1a−Y
∂Y

∣∣∣∣∣∣∣


= fTR1a

(
w + z

2

)
fY

(
w− z

2

)
∗ 1

2

www.manaraa.com

48

and the PDF of Z is found by rationalizing the joint distribution, f(W,Z)(w, z) over all the

values of W.

fZ(z) =
∫ ∞

|z|
f(W,Z)(w, z)dw (5.6)

fZ(z) =



1
4µ2

0µ2
1(µ0+µ1)2(µ0−µ1)[

−a3
0e

b
µ0 (2b− µ0)(µ0 − µ1)µ

2
1(µ0 + µ1)

2+

a3
1e

b
µ1 µ2

0(2b− µ1)(−µ0 + µ1)(µ0 + µ1)
2+

4a0a2
1µ2

0µ1∗ , z < 0(
be

b
µ1 (−µ2

0 + µ2
1) + µ1(2e

b
µ0 µ0(µ0 + µ1)− e

b
µ1 µ1(3µ0 + µ1))

)
+

4a2
0a1µ0µ2

1∗(
−be

b
µ0 (µ2

0 − µ2
1) + µ0(−2e

b
µ1 µ1(µ0 + µ1) + e

b
µ0 µ0(µ0 + 3µ1))

)]

1
4µ0µ1(µ0+µ1)2 e−b(1

µ0
+ 1

µ1
)[

a3
1e

b
µ0 µ0(µ0 + µ1)

2+ a3
0e

b
µ1 µ1(µ0 + µ1)

2+ , z ≥ 0

4a0a2
1µ0µ1

(
e

b
µ1 µ0 + e

b
µ0 (µ0 + µ1)

)
+

4a2
0a1µ0µ1

(
e

b
µ0 µ1 + e

b
µ1 (µ0 + µ1)

)]
Lastly, the probability of collision for sharing Type 1|2 is fund using equation 5.6.

P1|2
c = P(0 < TR1a − (TR1b + TR2b) < 2TT)

= P(0 < Z < 2TT)

=
∫ 2TT

0
fZ(z) dz

=
∫ 2TT

0

1
4µ0µ1(µ0 + µ1)2 e−b(1

µ0
+ 1

µ1
)
[

a3
1e

b
µ0 µ0(µ0 + µ1)

2 + a3
0e

b
µ1 µ1(µ0 + µ1)

2 (5.7)

+ 4a0a2
1µ0µ1

(
e

b
µ1 µ0 + e

b
µ0 (µ0 + µ1)

)
+ 4a2

0a1µ0µ1

(
e

b
µ0 µ1 + e

b
µ1 (µ0 + µ1)

)]
Figure 5.3, on the next page, presents a graphical representation of the PDF of fZ(z) as

derived in equation 5.6.

www.manaraa.com

49

Figure 5.3: Probability Density Function for Sharing Type 1|2

5.3 Travel Time Analysis

Travel time, TT, as defined in Section 5.1 refers to the time (in cycles) that a link is busy

transmitting a packet. This time is a function of several parameters including, packet size,

bandwidth, flow control, etc. This sections shows the relation between the probability of

collision, bandwidth, and packet size.

5.3.1 Bandwidth

Bandwidth measures the capacity of the communication medium to move data, and it is

a function of the width and speed of the medium. Width refers to the number of bits that

may be transmitted in parallel. Speed is the maximum frequency at wich this bits may be

switched. Table 5.3 lists the most common widths found in embedded systems, and shows

the travel time, in cycles, that it takes to transmit a packet of 64B splited in 10 flits.

www.manaraa.com

50

Table 5.3: Travel delay as a function of Bandwidth

Bandwidth TT

(BITS/CYCLE) (CYCLES)

128 5

64 10

32 40

16 80

8 160

5.3.2 Packet Size

Packet size is traditionally measured in bytes, as a function of the amount of data carried

in a packet plus any additional information required by the communication protocol. Because

this research focuses on the impact of the communication protocols on system performance,

packet size may also be measured as the number of flits required by the communication

protocol to transmit a packet of a certain size in bytes. The flit size is fixed and defined by

the communication protocol, in this research the flit is fixed at 10 bytes. Of these 10 bytes,

8 are allocated for the payload and 2 for the flit header. Therefore, a packet of 64 bytes is

splited into 8 flits each of 10 bytes. Table 5.4 shows the travel time for packets of different

size, for a bandwidth of 32 bits/cycle.

Table 5.4: Travel delay as a function of Packet Size

Packet Size TT

(BYTES) (CYCLES)

16 5

32 10

64 20

128 40

256 80

512 160

5.3.3 Probability of Collision as a Function of TT

Equation 5.7, on page 48, shows the probability of collision as a function of travel time,

TT, for sharing Type 1|2. As previously discussed, travel time is a function of both bandwidth

and packet size. Therefore the probability of collision is also influenced by bandwidth and

www.manaraa.com

51

packet size. Furthermore, each sharing type produces produces a separate probability of

collision, Table 5.2. The probability of collision for the entire system is a linear combination

of the probabilities of each sharing type, and is given by

Ps
c =

∑n
i f reqi ∗ Pi

c

∑n
i f reqi

. (5.8)

Where Pi
c represents the probability of the ith sharing type, f reqi is the associated frequency,

and Ps
c is the total system probability of collision.

Table 5.5 summarizes the system probability of collision (Ps
c) for the sample system with

XY routing and bandwidth of 32 bits/cycle. On this table the column labeled Ps
c (TT) shows

the probability results from the model of equation 5.8, and the column labeled Simulation

contains the actual package drop percents from simulation. Figure 5.4 is a graphical repre-

sentation of the data in Table 5.5. As expected the system probability (Ps
c (TT)) is a growing

function of packet size. These probabilities are derived from the mixture model with the

minimum MSE, and parameters µ0 = 1.4120, µ1 = 21.428, a0 = 0.9961. It is necessary to

address the accuracy of the system probability model, as depicted in Figure 5.4.

Table 5.5: System Probability of Collision: Ps
c (TT)

Packet Size
Ps

c (TT) Simulation
TT

(BYTES) (CYCLES)

16 0.42764 0.49531 5

32 0.46284 0.54971 10

64 0.46698 0.55941 20

128 0.46874 0.56571 40

256 0.46960 0.58561 80

512 0.46965 0.61781 160

5.3.3.1 Accuracy Vs Fidelity

As can be seen in Figure 5.4 the probability model is of low accuracy. However, fidelity

is the necessary attribute that makes the probability model useful for system-level design.

Fidelity measures how well the model predict the behavior of the system. A good measure-

ment of fidelity is the correlation factor between the model and the simulation. A correlation

factor of 1 indicates the highes fidelity, while a factor of 0 suggest no fidelity. The model

www.manaraa.com

52

Figure 5.4: Probability of Collision for XY Routing - Random Traffic, 32[bits/cycle]

shown in Figure 5.4 has a correlation factor of 86, that shows that this model has very good

fidelity to the actual simulation data.

Finally, the system probability model shown in Figure 5.4 depicts the initial relation be-

tween the system performance and the probability. Increasing the packet size results in

system degradation, in the form of increased travel time and it is observed as an increased

in packets dropped. At the same time, as the system performance degrades, the probability

of collision increases. This is the expected behavior and the basis for proposed probabilistic

approach. The next chapter shows how the system probability of collision may be used in

the system-level framework to guided the design process.

www.manaraa.com

53

CHAPTER 6. Case Study: System-Level Design with Mixture Models

Chapter 4 shows how to develop a mixture model for a given architecture, and Chapter

5 presents the system probability of collision as a performance metric. This chapter shows

how the mixture model and probability of collision are used in a system-level framework.

Particularly, this chapter presents mixture models for different architectures: adaptive and

XY routing; and shows how the system probability of collision may be used as a performance

estimator for comparing these architectures at higher levels of abstraction and making the

design decisions.

6.1 System-Level Design

The purpose of developing the mixture models is to use these models to guide the de-

sign process at higher abstraction levels. For instance, given the application communication

characteristics, it is possible to use the mixture model to evaluate the collision behavior of a

system at higher abstraction levels. Moreover, knowing that the routing time has a distribu-

tion fTR(x), it is possible to combine the application communication characteristics with the

mixture model to compute the probability of collision.

The collision distribution represents how the entire system reacts to the dynamic commu-

nication behavior of the application, and directly relates to the system performance. There-

fore, the probability of collision may be seen as a high level performance estimator. Dynamic

analysis, such as the one for collision, are possible with mixture models because of the tools

and methods available to statistical models, such as the mixture models.

The system probability of collision (Ps
c) was introduced in Section 5.3, and it is computed

as a linear combination of the collision probabilities of each sharing type found on the system

www.manaraa.com

54

level simulation. Defined as equation 5.8 it was shown to have a high correlation to the

collision behavior found during the low level simulation.

6.1.1 Average Flit Delay

The most widely used performance metric on interconnection networks is delay. Several

different delay metrics are available at the lower levels. This discussion focuses on the average

flit delay. The average flit delay is defined as the average number of cycles a flit spends on a

routing node.

Figure 6.1 shows a network message and how it is divided into packets, flits, and phits.

A packet is the basic unit of routing. The packet header is used to determine the route taken

by the packet from source to destination. Flow control digits, or flits, are the basic unit of

bandwidth and storage allocation. Flits carry no routing information. Thus, all flits in a

packet must follow the same path from source to destination.

Depending on its position on the packet, a flit may be a head flit, body flit, or tail flit.

A head flit is the first flit of a packet and follows the route determined by the packet. All

bandwidth and storage allocation for the packet is performed by the head flit. The head flit

is followed by zero or more body flits and one tail flit. The tail flit is the last flit of the packet

and is most commonly used for resource deallocation. Finally, a flit may be divided into

physical transfer digits, or phits. A phit is the unit of information that is transferred across a

channel in a single clock cycle.

The average flit delay measures the average number of cycles a flit spends on a routing

node. This delay directly reflects the amount of time a packet is held at a node due to

the node resource limits. That is, the average flit delay is a measurement of the flits that

are queued waiting inside routing nodes to be serviced and forwarded along the packet’s

routing path.

6.1.2 Probability Metric

The new high-level estimator introduced in this research is the system probability of

collision, Ps
c . The system probability of collision is a dynamic estimator, that extracts the

www.manaraa.com

55

Figure 6.1: Anatomy of a Network Message

application communication behavior as the distribution of the shared links. This system

probability estimator is defined as

Ps
c =

∑n
i f reqi ∗ Pi

c

∑n
i f reqi

.

Pi
c, on the equation above, is the probability of collision for the ith sharing type and it is a

function of the mixture model, the relative location of the shared link on the path, and the

travel time. For example, the probability of collision for sharing Types 1|2 and 2|2 are given

by equations 6.1 and 6.2, respectively.

P1|2
c = P(0 < TR1a − (TR1b + TR2b) < 2TT), and (6.1)

P2|2
c = 2 ∗ P(0 < (TR1a + TR2a)− (TR1b + TR2b) < TT). (6.2)

For detail derivation of the probability of collision for the different sharing types and the

system probability of collision see sections 5.2 and 5.3.3.

The goal of system-level design is to provide the designer with the tools to navigate the

design space. The following sections will show how Ps
c is used in system-level design to

rapidly and accurately navigate the design space. The rest of this chapter will particularly

show the entire process of:

• defining the mixture models for XY and adaptive routing architectures,

www.manaraa.com

56

• using these models to simulate the system at higher levels of abstraction to find the

shared link distribution,

• computing sharing type probabilities Pi
c, and

• finding Ps
c .

Finally, to show the validity of Ps
c , the conclusions reached through Ps

c are shown to correlate

to the theoretically expected behavior.

6.2 Design Space Exploration

Design Space Exploration refers to the process of investigating the various design op-

tions and their implementation cost. The goal of system-level design is to guide designers

to explore the design space to find a design solution for a given set of parameters and con-

strains. This solution may not be optimal, since in the case of multiple design objectives

like minimum communication delay or processing delay, minimal area, and lower power

consumption; finding the optimal solution within realist time constraints is impossible.

System-level design defines several levels of abstraction. Using the tools and models

available at the higher abstraction levels, it is possible to evaluate a larger area of the design

space at a lower simulation/design cost. The first step to develop these abstracted models is

to characterize the architecture features of interest.

6.2.1 Adaptive Routing

Adaptive routing is an important subset of the routing schemes available to interconnect

networks. For this case study adaptive routing is implemented in a system with 64 nodes

arranged in an 8x8 torus, and wormhole flow control. The particular adaptive scheme studied

here makes the routing decision based on the available buffer space. That is the next node on

the packet path, which is the one with most buffer memory available to receive the incoming

packet.

To begin evaluating the adaptive routing the first step is to develop the mixture model

for an adaptive routed system. To this end, adaptive routing is simulated over hotspot

www.manaraa.com

57

traffic. Holding the buffer size at a nominal 16 filts, the packet size is varied from 16 to 512

flits. For each packet size a mixture model may be derived to represent the communication

architecture behavior for the particular architecture options. Table 6.1 show the mixture

models that captures the communication behavior of an adaptive routing architecture.

Table 6.1: Mixture Models for Adaptive Architecture

Buffer Packet
Mixture Parameters
µ0 µ1 a0

16

16 1.312 7.220 1.000

32 1.520 93.604 0.949

64 1.519 48.941 0.925

128 1.705 108.064 0.912

256 1.860 133.767 0.891

512 2.132 174.422 0.843

While a single mixture model may be used to represent the different packet sizes, as seen

on section 4.4, a set of models as shown in Table 6.1 more accurately captures the behavior

of the particular architecture. High level models will alway benefit from the most detailed

characterization possible. Figure 6.2 depicts the empirical distribution, exponential fit, and

mixture model for a packet size of 64 flits. For the details outlining how each mixture model

is developed see Section 4.3.

Figure 6.2: Mixture Models: Adaptive Routing, Hotspot Traffic, 64 flits

www.manaraa.com

58

6.2.2 XY Routing

Having developed the mixture models for an adaptive routing architecture, the next re-

search step is to evaluate is XY routing. Deterministic XY routing is a commonly used routing

scheme. The advantages of deterministic routing are many, such as simple design and anal-

ysis, ease of implementation, low latency for well behaved loads, etc. Just like adaptive

routing, the XY routing architecture was implemented as an 8x8 torus with 64 nodes, and

wormhole flow control.

As with adaptive routing the XY routed system is simulated over hotspot traffic; and

characterized with buffer size of 16 filts, and packet sizes varying from 16 to 512 flits. The set

of mixtures models that capture the XY routing communication behavior are shown in Table

6.2. Figure 6.3 depicts the empirical distribution, exponential fit, and mixture model for a

Table 6.2: Mixture Models for XY Architecture

Buffer Packet
Mixture Parameters
µ0 µ1 a0

16

16 1.500 7.298 1.000

32 1.764 56.812 0.935

64 1.717 77.527 0.910

128 1.849 152.999 0.895

256 1.929 219.081 0.877

512 2.545 263.668 0.854

packet size of 64 flits of the XY routed system.

Having developed mixture models capturing the communication architecture behavior

for adaptive and XY routing, the next step is to use these models in a higher level simulation.

6.2.3 High Level Simulation

The mixture model fTR(x) becomes the representation of the routing elements on any fu-

ture high level models that include the same communication architecture. Different mixture

models are derived to represent different architecture alternatives. Much useful information

may be gathered from the mixture model directly; e.g. the mean routing time. However, the

www.manaraa.com

59

Figure 6.3: Mixture Models: XY Routing, Hotspot Traffic, 64 flits

statistical mixture model becomes exceptionally useful when exposed to dynamic loads.

For instance, given the application communication characteristics, it is possible to use

the mixture model to evaluate the collision behavior of a system at the highest abstraction

level. Given the routing distribution as the mixture distribution of fTR(x), the application

communication characteristics may be combined with fTR(x) to compute the probability of

collision. This probability of collision captures how the system behaves when interacting to

the dynamic communication behavior of the application, and have a direct relation to the

system performance. This kind of dynamic analysis, which combines the mixture model

with the application communication behavior, is possible because of the tools and methods

available to statistical models like the mixture models.

6.2.3.1 Simulation Path Analysis

The mixture models capture the communication behavior of the communication archi-

tecture. To produce a high level estimate it is necessary to combine the communication

architecture characteristics, with the application communication pattern. In this case the ap-

plication communication behavior is extracted as a particular traffic pattern model, hotspot

traffic.

In this hotspot traffic model 20% of the system is designated as the hotspot. That is, 80% of

www.manaraa.com

60

all the nodes on the system will choose the same 20% area or the system as their destination.

The nodes inside the 20% hotspot are chosen at random, and are all equally likely, and

all traffic is exponentially injected into the network. This hotspot behavior is capable of

recreating the type of bottlenecks commonly found in audio and video encoding/decoding

applications.

Simulating the mixture models at the higher abstraction levels, under a hotspot traffic,

results in a set of link utilization figures. As disclosed in Section 5.1 the shared links are

classified according to their position within the path. That is, given two packets A and B

there is one link shared between the paths of two packets; a sharing Type 1|2 implies that the

shared link is the first link on packet’s A path and the second link on packet’s B.

Table 6.3 shows the most frequent sharing types for both XY and adaptive mixture modes.

Notice that, while for both XY and adaptive the most frequent types are 1|2 and 3|4, Type

1|2 is the most frequent for XY and Type 3|4 is for adaptive. This concurs with the behavior

of the two routing schemes. Since XY is deterministic it will continue to favor the same

paths regardless of the load on the network, as it is evident by the frequency magnitude of

sharing types 1|2 and 3|4. On the other hand, the distribution of sharing types for adaptive

is much more subtle. More over sharing Type 3|4 is the most frequent, showing that adaptive

favors sharing links closer to the destination node, where there are less path options. The

distribution of Table 6.3 captures the application communication characteristics, and shows

the communication behavior when simulated at a higher abstraction level.

Table 6.3: Shared Link Frequencies, XY and Adaptive routing with 64 flit packet size.

Type
Routing

XY Routing Adaptive
1|2 12341 9093

3|4 11368 9495

3|5 9591 8042

1|3 9494 8123

2|4 9062 8515

3|3 6631 5371

www.manaraa.com

61

6.2.3.2 Performance Estimation

Having gathered the application communication characteristics, for a hotspot traffic on

the different routing architectures, it is possible now to estimate the system performance.

Particularly, the system performance is estimated through the system probability of collision.

The system probability of collision, Ps
c , combines the dynamic application characteristics,

from the share link distribution, with the communication architecture characteristics, and

produces a performance estimate.

The system probability of collision is a linear combination of the probabilities of each

sharing type, and is given by

Ps
c =

∑n
i f reqi ∗ Pi

c

∑n
i f reqi

. (6.3)

Where Pi
c represents the probability of the ith sharing type, and f reqi is the associated share

link type frequency. For reference the probabilities of collision for sharing Types 1|2 and 2|2

are given below.

P1|2
c = P(0 < TR1a − (TR1b + TR2b) < 2TT), and

P3|4
c = P(0 < (TR1a + TR2a + TR3a)− (TR1b + TR2a + TR3a + TR4a) < 2TT).

Using equation 6.3 and the sharing frequencies from Table 6.3 a system probability is

computed for each packet size. Figure 6.4 shows the system probability of collision for XY

and adaptive routing using the different packet sizes. Figure 6.4 clearly shows that adaptive

routing is a better choice for the particular system under hotspot traffic. However, more

information may be gathered from Ps
c .

Figure 6.5 shows the normalized Ps
c Difference with respect to adaptive routing. The

normalized difference shows the improvement, as a percentage, that adaptive routing is

estimated to achieve over XY routing. Figure 6.5 clearly shows that the for smaller packets

adaptive routing is a the better choice, with a nomalized difference between 2 and 3%. On

the other hand, for larger packets adaptive is only marginally better with a difference of less

than 1%. Thus figures 6.4 and 6.5 collectively show that adaptive routing outperforms XY

www.manaraa.com

62

Figure 6.4: Ps
c for XY and Adaptive routing.

routing; and, for smaller packets in particular, the implementation cost of adaptive routing

is well justified.

6.3 Transpose Traffic

The design space exploration of section 6.2 focused on hotspot traffic. However, hotspot

is not the only standard synthetic traffic available, and other applications may be better

modeled by other traffic patterns. One such traffic pattern is the transpose traffic.

In transpose traffic each node sends messages only to a destination with the upper and

lower halves of its own address transpose. Just like in the case of hotspot, the transpose traffic

is exponentially injected into the network. Both XY and adaptive routing are evaluated with

this traffic.

www.manaraa.com

63

Figure 6.5: Normalized Ps
c Difference with respect to Adaptive routing.

6.3.1 Mixture Models for Transpose Traffic

It is known that the routing behavior is somewhat application dependent[48]. Therefore,

different mixture models are used when evaluating different traffics. Following the method-

ology set forth in Chapter 4 statistical models for XY and adaptive routing under transpose

traffic are developed. Table 6.4 shows the mixture parameters for these models.

Table 6.4: Mixture Models for Transpose Traffic

Buffer Packet
Mixture Parameters

XY Routing Adaptive Routing
µ0 µ1 a0 µ0 µ1 a0

16

16 1.298 8.936 0.784 1.118 3.595 1.000

32 1.420 75.192 0.776 1.270 15.924 1.000

64 1.468 89.328 0.663 1.273 31.640 0.957

128 1.314 126.678 0.519 1.352 46.780 0.909

256 1.120 305.605 0.472 1.510 66.812 0.867

512 0.984 302.605 0.336 1.603 106.055 0.794

Using the models of Table 6.4 system designers can run high level simulations for appli-

www.manaraa.com

64

cations with traffic patterns similar to the transpose pattern. The result from the high level

simulations is the shared link distribution, shown in Table 6.5. Finally the system probability

of collision, Ps
c , combines the mixture models on Table 6.4 and the shared link frequencies

from Table 6.5 and generates the system performance estimate.

Table 6.5: Shared Link Frequencies, XY and Adaptive routing with 64 flit packet size and
Transpose Traffic.

Type
Routing

XY Routing Adaptive
1|2 16997 9837

3|4 12223 9196

3|5 8164 7518

1|3 12078 9427

2|4 12078 8408

3|3 8689 5359

Figure 6.6a shows the system probability of collision for XY and adaptive routing when

loaded under transpose traffic. In this case, as it was for Hotspot, adaptive routing is shown

to be the better design choice; with a lower system probability of collision for all packet

sizes. However, the gap between the two routing schemes is wider for this traffic pattern.

Figure 6.6b takes a closer look at the difference between the two routing schemes and shows

the normalized difference between the two. Section 6.4 further compares the differences

between the estimates for hotspot and transpose traffic.

6.4 System Probability Estimate Evaluation

From the system provability of collision – Ps
c on figures 6.4, 6.5, and 6.6 – a system level

designer would conclude that adaptive routing is the best choice for the particular application

and given the set of design constraints. Thus the design space exploration continues moving

to lower abstraction levels by adding more details to the models. However, the question for

this research is whether Ps
c leads the designer to make the correct design decision.

To evaluate the validity of Ps
c as an estimator of system performance, it is necessary to

correlate the conclusions from the estimate and what it is theoretically expected. Figure 6.7

www.manaraa.com

65

(a) Ps
c for XY and adaptive routing, transpose traffic.

(b) Normalized Ps
c Difference with respect to adaptive routing, transpose traffic.

Figure 6.6: Performance estimate for XY and Adaptive routing when loaded under Transpose
Traffic.

show the system probability of collision for XY and adaptive routing under hotspot, 6.7a,

and transpose, 6.7b. As expected adaptive is shown to be the best choice for both cases.

While Figure 6.7 shows adaptive routing to be the better choice, it also shows that it is not

www.manaraa.com

66

(a) Ps
c for hotspot traffic.

(b) Ps
c for transpose traffic.

Figure 6.7: Ps
c for XY and adaptive, hotspot v. transpose.

equally better for both cases. According the the system probability of collision estimation,

adaptive is particularly better for a system with an application that having a transpose com-

munication behavior. This comparison becomes more clear when looking at the normalized

difference for hotspot versus transpose.

Figure 6.8 shows side-by-side the normalized Ps
c differences with respect to adaptive

routing for hotspot and transpose traffic. Figures 6.8a and 6.8b shows the estimated perfor-

mance improvement that adaptive routing may provide over XY routing. Figure 6.8a shows

a maximum improvement of 3%, while for transpose traffic Figure 6.8b shows a maximum

www.manaraa.com

67

improvement of 18%.

(a) Normalized Ps
c difference with respect to

Adaptive routing, hotspot traffic.

(b) Normalized Ps
c difference with respect to

adaptive routing, transpose traffic.

Figure 6.8: Normalized Ps
c differences with respect to adaptive routing, hotspot v. transpose.

The different improvement for the different traffic patterns is explained by the known

behavior of the two routing schemes. The deterministic XY routing has no knowledge of

the network conditions and obviously routes for the messages. As a result the collision

performance of XY routing is is more susceptible to traffic. Figure 6.9 clearly shows this

behavior.

On the other hand, adaptive considers the current state of the communication network

when routing the messages. Therefore its collision performance is less susceptible to the

traffic behavior. Figure 6.10 shows shows that for adaptive routing, unlike for XY routing,

the estimated collision performance are closer together.

In conclusion this chapter showed how the mixture models may be used in the context

of system level design. Two communication architectures were presented, adaptive and XY

www.manaraa.com

68

Figure 6.9: Ps
c for XY routing, hotspot v. transpose traffic.

Figure 6.10: Ps
c for adaptive routing, hotspot v. transpose traffic.

routing, and compared using the high level estimator of system probability of collision for

two different standard synthetic traffic patterns: hotspot and transpose traffic. In both cases

the system probability of collision estimator indicated that adaptive routing was the better

choice. Moreover, the system probability of collision estimator was shown to correlate with

the theoretical behavior of both routing schemes across the different traffic patterns; thus,

validating the system probability of collision as an estimator useful for making high level

design decisions.

www.manaraa.com

69

CHAPTER 7. Summary and Conclusion

This research asked the question of how to include the communication architecture fea-

tures at the higher abstraction levels of the system level design. The proposed answer is a

two part solution, (i) the models that capture the communication architecture features and

move them into the higher abstraction levels, and (ii) the tools that allow designers to use

these models to correctly navigate the design space at the higher levels of abstraction.

7.1 The Mixture Model

This research introduced a new methodology for modeling communication architecture

features at higher abstraction levels. At the heart of this methodology is the mixture model.

A mixture model is derived from the delay characteristics of the communication components,

in particular the routing delay.

Mixture models developed for two different routing schemes, XY and adaptive. A mixture

model is defined by

fX(x) =
n

∑
i=0

ai fYi(x),

where the density functions fYi(x) are the mixture components, and ai are the mixture propor-

tions; with the constraints that 0 ≤ ai ≤ 1 and a1 + a2 + · · ·+ ai = 1. Developing a mixture

model to capture the communication behavior entails finding the combination of mixture

components and mixture proportions that best describe the particular communication behavior.

To develop a mixture model for a particular routing scheme the steps are as follow.

1. Characterize the particular routing components and extract the delay distribution.

www.manaraa.com

70

2. Split the characteristic distribution into two sets where, given a characteristic distribu-

tion of n data points, the first set contains the data points from 0 to w; and the second

set has the rest of the data points from w + 1 to n.

3. Then, iteratively:

(a) perform separate exponential fits over each set to find the mixture component fY1(x)

and fY2(x);

(b) solve Trave = µw ∗ a + µw+1 ∗ (1 − a) to find the mixture proportions a1 = a and

a1 = a− 1, where Trave is the average routing time from the characterization;

(c) combine the mixture components and mixture proportions into the mixture model

fTR(x) = a0 fY0(x) + a1 fY1(x);

(d) compute the mean square error (MSE) between the characteristic distribution and

the mixture model fTR(x); and

(e) change the size of the two initial sets by moving data points from the second set

into the first set.

The mixture model with the minimum MSE is chosen to model the particular routing scheme

at the higher abstraction levels.

This mixture model modeling methodology is the first contribution of this research. How-

ever, a higher level model is only useful if there are tools that allow the use of such model to

estimate the system performance at the higher levels. For statistical models, like the mixture

models, probability is such a tool. Given an event that properly captures the communication

application behavior, then probability can measure the likelihood of this event happening in

the system.

7.2 Probability of Collision

The collision distribution represents how the entire system reacts to the dynamic commu-

nication application behavior, and directly relates to the system performance. This research

examined the probability that packets collide when competing for communication resources,

www.manaraa.com

71

in particular the communication medium. Given two packets that share one link between

their path, the collision event is defined as the time when both packets request this link.

In general, the probability of two packets colliding is given by

Pc = P(0 < |TB − TA| < TT).

Where TA and TB are the times when packets A and B require the communication medium,

respectively, and TT is the amount of time that each packet requires exclusive access to the

communication medium.

On the one hand, TA and TB are random variables whose values depend on the relative

position of the shared link on the paths of packets A and B. On the other hand, TT is the travel

time and refers to the time that the shared link is busy transmitting a packet. Travel time is

a function of several system parameters including packet size, bandwidth, flow control, etc.

Because TA and TB vary depending on the location of the shared link, it is necessary to

define the probability of collision for the different possible shared link locations. A naming

convention is defined, where a shared link of type 1|2 indicates that the shared link is the

first link on the path of packet A and the second link on packet B’s path. Using this naming

convention the probability of collision for the different sharing types may be found.

For example for a Type 1|2 shared link

TA = TR1a , and

TB = TR1b + TT + TR2b .

Where, TR1a , TR1b , and TR2b are identically distributed independent random variables with

PDF given by the mixture model. Therefore, the probability of collision for Type 1|2 is

P1|2
c = P(0 < |TB − TA| < TT).

= P(−TT < (TR1b + TR2b + TT)− TR1a < TT)

= P(0 < TR1a − (TR1b + TR2b) < 2TT).

Combining the mixture models and the probability of collision provides a proper framework

where the communication architecture features can be combined with the application com-

www.manaraa.com

72

munication behavior, to produce a system level metric that can help the designer to navigate

the system level design space at the higher abstraction levels.

7.3 System Level Design

The main goal of this research is to provide a framework that allows system level design-

ers to evaluate the impact communication design choices have at higher abstraction levels.

Until today, at the higher abstraction levels, designers are only capable of measuring the im-

pact that the computation architecture features have on the system performance. However,

this research shows that using mixture models in combination with the probability of colli-

sion, it is possible to estimate the impact of the communication architecture features at this

higher abstraction level.

To estimate the communication architecture impact on the system performance, it is nec-

essary to combine all the individual probabilities for the different sharing types into one

System Probability of Collision. The System Probability of Collision combines each sharing

type probability, and it is defined as

Ps
c =

∑n
i f reqi ∗ Pi

c

∑n
i f reqi

.

Where Pi
c represents the probability of the ith sharing type, and f reqi is the associated share

link type frequency.

The sharing type frequency, f reqi, measures the number of times a particular sharing

type is repeated on a high level simulation of the system under a given application. That is,

f reqi captures the application communication behavior and allows the system probability of

collision to combine the application communication behavior and the architecture communi-

cation characteristics into one dynamic estimator.

The system probability of collision, Ps
c , is the main contribution of this research. This

probability serves as a high level system performance estimator. This estimator allows the

designer to evaluate the system performance due to communication architecture, and aids

the designer during the design space exploration at the higher abstraction levels.

www.manaraa.com

73

7.4 Future Work

This research pioneered a methodology that enables design space exploration to include

the communication architecture features at the higher abstraction levels. A mixture model

is presented that includes the communication features at the higher abstraction levels, and

a new system performance estimator is introduced to guide the design space exploration.

However, some important questions remain unanswered.

7.4.1 Further Exploration of the Mixture Models

The mixture models of Chapter 4 are of the form

fX(x) =
n

∑
i=0

ai fYi(x).

However, only models with two mixture components, fY1(x) and fY2(x), are considered in

this research. More complex models are able to capture more details. Thus, it would be

beneficial to study if and how the methodology would benefit from more complex mixtures

with three or more components.

The question of the complexity of the mixture model is a complicated one. While an

initial two component mixture is intuitive, this is not the case for mixtures of three or more

components; and complicated issues arise from the added complexity. Furthermore, using

more mixture components further complicate the relation between the mixture proportions,

ai.

In this research the mixture proportions are found through Trave = µw ∗ a + µw+1 ∗ (1− a),

however this relation only holds for the particular exponential mixture components used. If

the mixture components are changed so that the given relation no longer holds, then a new

relation must be developed to properly assign the mixture proportions.

7.4.2 Further Path Analysis

Chapter 5 showed the path analysis necessary to derive the system probability of collision.

This path analysis concentrated on paths sharing only one link. Nevertheless, packets may

www.manaraa.com

74

share more that one link. A question remains, how is the system probability of collision

affected when considering multiple shared links.

This research showed how to derived the probability of collision of one shared link, and

showed that this probability depends on the relative location of the shared link. To find the

probability of collision for paths with multiple shared links would require derivations similar

to those in Section 5.2. Once these new probabilities are found they may be combined into

the system probability of collision, given the correct sharing frequencies.

The system probability of collision is a function of the shared link probability of collision

and the shared link frequency at the higher abstraction levels. This research concentrated

solely on the most frequent sharing link types. However, the high level simulation generates

many more sharing types. To include each of these sharing types into the system probability

of collision it is necessary to derive the probability of collision for the particular type.

The derivation of probability of collision of each type is complex and time consuming,

and it is not particularly clear how much more accuracy may be achieved from adding these

other less frequent types, before entering the point of diminishing returns. However, it is an

important question that is left unanswered.

7.4.3 Further Assessment of Communication Architecture Features

Adaptive and deterministic routing schemes are very popular in embedded systems, but

they are not the only ones available to system designers. Other routing schemes remain, and

combination thereof, remain to investigate. The methodology introduced in this research

applies to all communication components, but different communication architectures have

different features.

This research is further limited to wormhole workflow only. Wormhole is by far the most

widely used workflow scheme in embedded systems, but similar to routing, other options

remain unstudied. However, unlike the routing schemes that are solely characterized by the

mixture models, the workflow selection has further implication, particularly regarding the

probability of collision.

Given wormhole workflow when a collision occurs between two packets, one packet

www.manaraa.com

75

continues to its destination while the losing packet simply disappears as if gone through a

wormhole. However, other workflow schemes with different behavior may produce different

collision distributions.

Thus, it is imperative to continue to investigate how the different communication ar-

chitecture features may be modeled as mixture distributions, without losing sight of the

implication this features may have on the collision distribution. This entails finding the best

mixture components and proportions for the particular architecture feature, and reevaluating

the conditions that define the probabilities of collision.

7.4.4 Further Validation of Ps
c

In Chapter 6 the system probability of collision predicted adaptive as the better routing

scheme for both hotspot and transpose traffic. This was the expected result and adaptive

is known to outperform XY for this two cases. However, further validation of Ps
c would

certainly be beneficial. In particular validating Ps
c against different low-level metrics such as

packet dropped rate and flit delay. Showing the correlation between the high level estimate

and the low-level metrics would present a more complete picture and further show the utility

of Ps
c as a guide for system-level design exploration.

7.5 Final Remarks

In conclusion, the research presented here breaks new ground in system level design

by allowing communication architecture features to be considered at the higher levels of

abstraction. A completely new modeling methodology is developed from which communi-

cation architecture features, like routing, are abstracted and raised higher on the system level

design hierarchy. At the heart of this methodology is the statistical mixture model.

The mixture models enable the decomposition of the empirical data into its components,

and enable designers to determine how these components may be judged. Intuitively, and

stemming from the law of diminishing returns, not all of the empirical data is necessary

to make correct design decisions. The innovated methodology introduced in this research

www.manaraa.com

76

provides an algorithmic process that result in a high level model that correctly captures the

particular communication architecture feature.

Along with the innovative methodology, this research further pioneered a high level sys-

tem performance estimator. Based on the probability of collision, this cutting edge estimator

provides the means by which the mixture models are included into the system level de-

sign exploration. The system probability of collision combines the dynamic aspects of the

application communication behavior and, through the mixture models, the communication

architecture features providing a reliable performance estimate that system level designers

can use to correctly explore the design space.

www.manaraa.com

77

BIBLIOGRAPHY

[1] International technology roadmap for semiconductors, 2009. URL

http://www.itrs.net/Links/2009ITRS/Home2009.htm.

[2] Guido Arnout. The SystemC Standard. In ASP-DAC ’00: Proceedings of the 2000 conference

on Asia South Pacific design automation, pages 573–578, New York, NY, USA, 2000. ACM.

ISBN 0-7803-5974-7. doi: http://doi.acm.org/10.1145/368434.368808.

[3] Amer Baghdadi, Nacer-Eddine Zergainoh, Wander O. Cesário, and Ahmed Amine Jer-

raya. Combining a performance estimation methodology with a hardware/software

codesign flow supporting multiprocessor systems. IEEE Trans. Softw. Eng., 28(9):822–

831, 2002. ISSN 0098-5589. doi: http://dx.doi.org/10.1109/TSE.2002.1033223.

[4] Felice Balarin, Yosinori Watanabe, Harry Hsieh, Luciano Lavagno, Claudio Passerone,

and Alberto Sangiovanni-Vincentelli. Metropolis: An integrated electronic sys-

tem design environment. Computer, 36(4):45–52, 2003. ISSN 0018-9162. doi:

http://dx.doi.org/10.1109/MC.2003.1193228.

[5] Luca Benini. Application specific noc design. In DATE ’06: Proceedings of the conference

on Design, automation and test in Europe, pages 491–495, 3001 Leuven, Belgium, Belgium,

2006. European Design and Automation Association. ISBN 3-9810801-0-6.

[6] Luca Benini and Giovanni De Micheli. Networks on chips: A new soc paradigm. Com-

puter, 35(1):70–78, 2002. ISSN 0018-9162. doi: http://dx.doi.org/10.1109/2.976921.

[7] Evgeny Bolotin, Israel Cidon, Ran Ginosar, and Avinoam Kolodny. Qnoc: Qos architec-

ture and design process for network on chip. J. Syst. Archit., 50(2-3):105–128, 2004. ISSN

1383-7621. doi: http://dx.doi.org/10.1016/j.sysarc.2003.07.004.

www.manaraa.com

78

[8] Luciano Bononi and Nicola Concer. Simulation and analysis of network on chip ar-

chitectures: ring, spidergon and 2d mesh. In DATE ’06: Proceedings of the conference on

Design, automation and test in Europe, pages 154–159, 3001 Leuven, Belgium, Belgium,

2006. European Design and Automation Association. ISBN 3-9810801-0-6.

[9] Lukai Cai. Estimation and exploration automation of system level design. PhD thesis, 2004.

Chair-Gajski,, Daniel.

[10] Lukai Cai and Daniel Gajski. Transaction level modeling: an overview. In CODES+ISSS

’03: Proceedings of the 1st IEEE/ACM/IFIP international conference on Hardware/software code-

sign and system synthesis, pages 19–24, New York, NY, USA, 2003. ACM Press. ISBN

1-58113-742-7. doi: http://doi.acm.org/10.1145/944645.944651.

[11] Lukai Cai, Andreas Gerstlauer, and Daniel Gajski. Retargetable profiling for rapid,

early system-level design space exploration. In DAC ’04: Proceedings of the 41st annual

conference on Design automation, pages 281–286, New York, NY, USA, 2004. ACM. ISBN

1-58113-828-8. doi: http://doi.acm.org/10.1145/996566.996651.

[12] P. Chandraiah, Junyu Peng, and R. Domer. Creating explicit communication in soc

models using interactive re-coding. pages 50–55, Jan. 2007. doi: 10.1109/ASP-

DAC.2007.357791.

[13] Marcello Coppola, Stephane Curaba, Miltos D. Grammatikakis, Giuseppe Maruccia, and

Francesco Papariello. Occn: A network-on-chip modeling and simulation framework.

In DATE ’04: Proceedings of the conference on Design, automation and test in Europe, page

30174, Washington, DC, USA, 2004. IEEE Computer Society. ISBN 0-7695-2085-5-3.

[14] Williams James Dally and Brian Towles. Principles and Practices of Interconnection Net-

works. Morgan Kaufmann Publishers, San Francisco, CA, 2004.

[15] Reetuparna Das, Onur Mutlu, Thomas Moscibroda, and Chita R. Das. Application-

aware prioritization mechanisms for on-chip networks. In Micro-42: Proceedings

of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture, pages

www.manaraa.com

79

280–291, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-798-1. doi:

http://doi.acm.org/10.1145/1669112.1669150.

[16] Abhijit K. Deb, Johnny Öberg, and Axel Jantsch. Control and communication perfor-

mance analysis of embedded dsp systems in the masic methodology. In ISSS ’01: Proceed-

ings of the 14th international symposium on Systems synthesis, pages 274–273, New York, NY,

USA, 2001. ACM. ISBN 1-58113-418-5. doi: http://doi.acm.org/10.1145/500001.500064.

[17] Sujit Dey and Surendra Bommu. Performance analysis of a system of communicat-

ing processes. In ICCAD ’97: Proceedings of the 1997 IEEE/ACM international conference

on Computer-aided design, pages 590–597, Washington, DC, USA, 1997. IEEE Computer

Society. ISBN 0-8186-8200-0.

[18] S. Edwards, L. Lavagno, E.A. Lee, and A. Sangiovanni-Vincentelli. Design of embedded

systems: formal models, validation, and synthesis. Proceedings of the IEEE, 85(3):366–390,

Mar 1997. ISSN 0018-9219. doi: 10.1109/5.558710.

[19] Fabrizio Fazzino, Maurizio Palesi, and Davide Patti. Noxim: Network-on-chip simula-

tor, 2008. URL http://noxim.sourceforge.net/.

[20] Anja Feldmann and Ward Whitt. Fitting mixtures of exponentials to long-tail distri-

butions to analyze network performance models. In INFOCOM ’97: Proceedings of the

INFOCOM ’97. Sixteenth Annual Joint Conference of the IEEE Computer and Communications

Societies. Driving the Information Revolution, page 1096, Washington, DC, USA, 1997. IEEE

Computer Society. ISBN 0-8186-7780-5.

[21] Masahiro Fujita and Hiroshi Nakamura. The standard specc language. In

ISSS ’01: Proceedings of the 14th international symposium on Systems synthesis,

pages 81–86, New York, NY, USA, 2001. ACM. ISBN 1-58113-418-5. doi:

http://doi.acm.org/10.1145/500001.500019.

[22] F. Fummi, D. Quaglia, and F. Stefanni. A systemc-based framework for modeling

and simulation of networked embedded systems. pages 49–54, Sept. 2008. doi:

10.1109/FDL.2008.4641420.

www.manaraa.com

80

[23] Daniel D. Gajski, Rainer Domer, Junyu Peng, and Andreas Gerstlauer. System Design: A

Practical Guide with Specc. Kluwer Academic Publishers, Norwell, MA, USA, 2001. ISBN

0792373871.

[24] N. Genko, D. Atienza, G. De Micheli, J. M. Mendias, R. Hermida, and F. Catthoor.

A complete network-on-chip emulation framework. In DATE ’05: Proceedings

of the conference on Design, Automation and Test in Europe, pages 246–251, Wash-

ington, DC, USA, 2005. IEEE Computer Society. ISBN 0-7695-2288-2. doi:

http://dx.doi.org/10.1109/DATE.2005.5.

[25] Andreas Gerstlauer, Dongwan Shin, Rainer Dömer, and Daniel D. Gajski. System-

level communication modeling for network-on-chip synthesis. In ASP-DAC

’05: Proceedings of the 2005 conference on Asia South Pacific design automation,

pages 45–48, New York, NY, USA, 2005. ACM. ISBN 0-7803-8737-6. doi:

http://doi.acm.org/10.1145/1120725.1120740.

[26] Kees Goossens, John Dielissen, Om Prakash Gangwal, Santiago Gonzalez Pestana, An-

drei Radulescu, and Edwin Rijpkema. A design flow for application-specific networks

on chip with guaranteed performance to accelerate soc design and verification. In DATE

’05: Proceedings of the conference on Design, Automation and Test in Europe, pages 1182–

1187, Washington, DC, USA, 2005. IEEE Computer Society. ISBN 0-7695-2288-2. doi:

http://dx.doi.org/10.1109/DATE.2005.11.

[27] J. Grode, P. V. Knudsen, and J. Madsen. Hardware resource allocation for hard-

ware/software partitioning in the lycos system. In DATE ’98: Proceedings of the conference

on Design, automation and test in Europe, pages 22–27, Washington, DC, USA, 1998. IEEE

Computer Society. ISBN 0-8186-8359-7.

[28] Omar Hammami and Muhammad Omer Cheema. Graduate education to fight sys-

tem level design productivity gap in soc design. In MSE ’07: Proceedings of the

2007 IEEE International Conference on Microelectronic Systems Education, pages 45–46,

www.manaraa.com

81

Washington, DC, USA, 2007. IEEE Computer Society. ISBN 0-7695-2849-X. doi:

http://dx.doi.org/10.1109/MSE.2007.46.

[29] H. Hashemi-Najafabadi, H. Sarbazi-Azad, and P. Rajabzadeh. An accurate perfor-

mance model of fully adaptive routing in wormhole-switched two-dimensional mesh

multicomputers. Microprocess. Microsyst., 31(7):445–455, 2007. ISSN 0141-9331. doi:

http://dx.doi.org/10.1016/j.micpro.2006.12.006.

[30] Wai Hong Ho and Timothy Mark Pinkston. A methodology for designing efficient on-

chip interconnects on well-behaved communication patterns. In HPCA ’03: Proceedings

of the 9th International Symposium on High-Performance Computer Architecture, page 377,

Washington, DC, USA, 2003. IEEE Computer Society. ISBN 0-7695-1871-0.

[31] Jingcao Hu and Radu Marculescu. Exploiting the routing flexibility for en-

ergy/performance aware mapping of regular noc architectures. In DATE ’03: Proceedings

of the conference on Design, Automation and Test in Europe, page 10688, Washington, DC,

USA, 2003. IEEE Computer Society. ISBN 0-7695-1870-2.

[32] Jingcao Hu and Radu Marculescu. Dyad: smart routing for networks-on-

chip. In DAC ’04: Proceedings of the 41st annual conference on Design automa-

tion, pages 260–263, New York, NY, USA, 2004. ACM. ISBN 1-58113-828-8. doi:

http://doi.acm.org/10.1145/996566.996638.

[33] Sungchan Kim, Chaeseok Im, and Soonhoi Ha. Efficient exploration of on-chip bus

architectures and memory allocation. In CODES+ISSS ’04: Proceedings of the 2nd

IEEE/ACM/IFIP international conference on Hardware/software codesign and system synthe-

sis, pages 248–253, New York, NY, USA, 2004. ACM Press. ISBN 1-58113- 937-3. doi:

http://doi.acm.org/10.1145/1016720.1016779.

[34] Peter Voigt Knudsen and Jan Madsen. Integrating communication protocol selection

with partitioning in hardware/software codesign. In ISSS ’98: Proceedings of the 11th

international symposium on System synthesis, pages 111–116, Washington, DC, USA, 1998.

IEEE Computer Society. ISBN 0-8186-8623-5.

www.manaraa.com

82

[35] Akash Kumar, Bart Mesman, Henk Corporaal, Bart Theelen, and Yajun Ha. A probabilis-

tic approach to model resource contention for performance estimation of multi-featured

media devices. In DAC ’07: Proceedings of the 44th annual conference on Design automa-

tion, pages 726–731, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-627-1. doi:

http://doi.acm.org/10.1145/1278480.1278662.

[36] Shashi Kumar, Acel Jantsch, Juha-Pekka Soininen, Martti Forsell, Mikael Millberg, Johny

Öberg, Kari Tiensyrjä, and Ahmed Hemani. A network on chip architecture and design

methodology. In ISVLSI ’02: Proceedings of the IEEE Computer Society Annual Symposium

on VLSI, page 117, Washington, DC, USA, 2002. IEEE Computer Society. ISBN 0-7695-

1486-3.

[37] Santanu Kundu and Santanu Chattopadhyay. Mesh-of-tree deterministic routing for

network-on-chip architecture. In GLSVLSI ’08: Proceedings of the 18th ACM Great Lakes

symposium on VLSI, pages 343–346, New York, NY, USA, 2008. ACM. ISBN 978-1-59593-

999-9. doi: http://doi.acm.org/10.1145/1366110.1366191.

[38] Kanishka Lahiri, Anand Raghunathan, and Sujit Dey. Efficient exploration of the

soc communication architecture design space. In ICCAD ’00: Proceedings of the 2000

IEEE/ACM international conference on Computer-aided design, pages 424–430, Piscataway,

NJ, USA, 2000. IEEE Press. ISBN 0-7803-6448-1.

[39] Hyung Gyu Lee, Naehyuck Chang, Umit Y. Ogras, and Radu Marculescu. On-chip

communication architecture exploration: A quantitative evaluation of point-to-point,

bus, and network-on-chip approaches. ACM Trans. Des. Autom. Electron. Syst., 12(3):23,

2007. ISSN 1084-4309. doi: http://doi.acm.org/10.1145/1255456.1255460.

[40] Mirko Loghi, Federico Angiolini, Davide Bertozzi, Luca Benini, and Roberto Zafalon.

Analyzing on-chip communication in a mpsoc environment. In DATE ’04: Proceedings of

the conference on Design, automation and test in Europe, page 20752, Washington, DC, USA,

2004. IEEE Computer Society. ISBN 0-7695-2085-5-2.

www.manaraa.com

83

[41] Peter S. Magnusson, Magnus Christensson, Jesper Eskilson, Daniel Forsgren, Gustav

Hållberg, Johan Högberg, Fredrik Larsson, Andreas Moestedt, and Bengt Werner. Sim-

ics: A full system simulation platform. Computer, 35(2):50–58, 2002. ISSN 0018-9162.

doi: http://dx.doi.org/10.1109/2.982916.

[42] Shankar Mahadevan, Federico Angiolini, Michael Storgaard, Rasmus Grondahl Olsen,

Jens Sparso, and Jan Madsen. A network traffic generator model for fast network-on-

chip simulation. In DATE ’05: Proceedings of the conference on Design, Automation and Test

in Europe, pages 780–785, Washington, DC, USA, 2005. IEEE Computer Society. ISBN

0-7695-2288-2. doi: http://dx.doi.org/10.1109/DATE.2005.22.

[43] M. Mirza-Aghatabar, S. Koohi, S. Hessabi, and M. Pedram. An empirical investigation

of mesh and torus noc topologies under different routing algorithms and traffic models.

In DSD ’07: Proceedings of the 10th Euromicro Conference on Digital System Design Archi-

tectures, Methods and Tools, pages 19–26, Washington, DC, USA, 2007. IEEE Computer

Society. ISBN 0-7695-2978-X. doi: http://dx.doi.org/10.1109/DSD.2007.28.

[44] Asit K. Mishra, Ravi Iyer, Reetuparna Das, N. Vijaykrishnan, Soumya Eachempati, and

Chita R. Das. A case for dynamic frequency tuning in on-chip networks. In Micro-

42: Proceedings of the 42nd Annual IEEE/ACM International Symposium on Microarchitec-

ture, pages 292–303, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-798-1. doi:

http://doi.acm.org/10.1145/1669112.1669151.

[45] G.E. Moore. Cramming more components onto integrated circuits. Proceedings of the

IEEE, 86(1):82–85, Jan 1998. ISSN 0018-9219. doi: 10.1109/JPROC.1998.658762.

[46] W. Mueller, A. Rosti, S. Bocchio, E. Riccobene, P. Scandurra, W. Dehaene, and Y. Van-

derperren. Uml for esl design: basic principles, tools, and applications. In IC-

CAD ’06: Proceedings of the 2006 IEEE/ACM international conference on Computer-aided

design, pages 73–80, New York, NY, USA, 2006. ACM. ISBN 1-59593-389-1. doi:

http://doi.acm.org/10.1145/1233501.1233518.

www.manaraa.com

84

[47] Srinivasan Murali, Martijn Coenen, Andrei Radulescu, Kees Goossens, and Giovanni

De Micheli. Mapping and configuration methods for multi-use-case networks on chips.

In ASP-DAC ’06: Proceedings of the 2006 conference on Asia South Pacific design automa-

tion, pages 146–151, Piscataway, NJ, USA, 2006. IEEE Press. ISBN 0-7803-9451-8. doi:

http://doi.acm.org/10.1145/1118299.1118344.

[48] M. Palesi, R. Holsmark, S. Kumar, and V. Catania. Application specific routing algo-

rithms for networks on chip. Parallel and Distributed Systems, IEEE Transactions on, 20(3):

316 –330, march 2009. ISSN 1045-9219. doi: 10.1109/TPDS.2008.106.

[49] Preeti Ranjan Panda. Systemc: a modeling platform supporting multiple design ab-

stractions. In ISSS ’01: Proceedings of the 14th international symposium on Systems syn-

thesis, pages 75–80, New York, NY, USA, 2001. ACM. ISBN 1-58113-418-5. doi:

http://doi.acm.org/10.1145/500001.500018.

[50] Sudeep Pasricha, Nikil Dutt, and Mohamed Ben-Romdhane. Fast explo-

ration of bus-based communication architectures at the ccatb abstraction.

Trans. on Embedded Computing Sys., 7(2):1–32, 2008. ISSN 1539-9087. doi:

http://doi.acm.org/10.1145/1331331.1331346.

[51] Faizal A. Samman, Thomas Hollstein, and Manfred Glesner. Multicast parallel pipeline

router architecture for network-on-chip. In DATE ’08: Proceedings of the conference on

Design, automation and test in Europe, pages 1396–1401, New York, NY, USA, 2008. ACM.

ISBN 978-3-9810801-3-1. doi: http://doi.acm.org/10.1145/1403375.1403714.

[52] Alberto Sangiovanni-Vincentelli and Grant Martin. Platform-based design and software

design methodology for embedded systems. IEEE Des. Test, 18(6):23–33, 2001. ISSN

0740-7475. doi: http://dx.doi.org/10.1109/54.970421.

[53] S. Santi, B. Lin, L. Kocarev, G.M. Maggio, R. Rovatti, and G. Setti. On the impact of

traffic statistics on quality of service for networks on chip. pages 2349–2352 Vol. 3, May

2005. doi: 10.1109/ISCAS.2005.1465096.

www.manaraa.com

85

[54] Joseph P. Schneider. Low-level estimation at high-levels of abstraction in system-level

design. MS in Computer Engineering, Iowa State University, Ames, IA, USA, 2007.

[55] Timo Schonwald, Jochen Zimmermann, Oliver Bringmann, and Wolfgang Rosenstiel.

Fully adaptive fault-tolerant routing algorithm for network-on-chip architectures. In

DSD ’07: Proceedings of the 10th Euromicro Conference on Digital System Design Architec-

tures, Methods and Tools, pages 527–534, Washington, DC, USA, 2007. IEEE Computer

Society. ISBN 0-7695-2978-X. doi: http://dx.doi.org/10.1109/DSD.2007.62.

[56] Donatella Sciuto, Grant Martin, Wolfgang Rosenstiel, Stuart Swan, Frank Ghenassia,

Peter Flake, and Johny Srouji. Systemc and systemverilog: Where do they fit? where

are they going? In DATE ’04: Proceedings of the conference on Design, automation and

test in Europe, page 10122, Washington, DC, USA, 2004. IEEE Computer Society. ISBN

0-7695-2085-5-1.

[57] M. Sgroi, M. Sheets, A. Mihal, K. Keutzer, S. Malik, J. Rabaey, and

A. Sangiovanni-Vencentelli. Addressing the system-on-a-chip interconnect woes

through communication-based design. In DAC ’01: Proceedings of the 38th conference on

Design automation, pages 667–672, New York, NY, USA, 2001. ACM. ISBN 1-58113-297-2.

doi: http://doi.acm.org/10.1145/378239.379045.

[58] Sören Sonntag, Matthias Gries, and Christian Sauer. SystemQ: Bridging

the gap between queuing-based performance evaluation and systemc. De-

sign Automation for Embedded Systems, 11(2):91–117, September 2007. URL

http://dx.doi.org/10.1007/s10617-006-9002-3.

[59] Leonel Tedesco, Aline Mello, Leonardo Giacomet, Ney Calazans, and Fernando

Moraes. Application driven traffic modeling for NoCs. In SBCCI ’06: Proceed-

ings of the 19th annual symposium on Integrated circuits and systems design, pages

62–67, New York, NY, USA, 2006. ACM Press. ISBN 1-59593-479-0. doi:

http://doi.acm.org/10.1145/1150343.1150364.

www.manaraa.com

86

[60] K. Van Rompaey, I. Bolsens, H. De Man, and D. Verkest. Coware—a design environment

for heterogenous hardware/software systems. In EURO-DAC ’96/EURO-VHDL ’96: Pro-

ceedings of the conference on European design automation, pages 252–257, Los Alamitos, CA,

USA, 1996. IEEE Computer Society Press. ISBN 0-8186-7573-X.

[61] Guang Yang, Alberto Sangiovanni-Vincentelli, Yosinori Watanabe, and Felice Balarin.

Separation of concerns: overhead in modeling and efficient simulation techniques.

In EMSOFT ’04: Proceedings of the 4th ACM international conference on Embedded soft-

ware, pages 44–53, New York, NY, USA, 2004. ACM. ISBN 1-58113-860-1. doi:

http://doi.acm.org/10.1145/1017753.1017765.

[62] Ki Hwan Yum, A. Vaidya, C.R. Das, and A. Sivasubramaniam. Investigating qos

support for traffic mixes with the mediaworm router. pages 97–106, 2000. doi:

10.1109/HPCA.2000.824342.

	2011
	A probabilistic approach to early communication performance estimation for electronic system-level design
	Ramon Alejandro Mercado
	Recommended Citation

	tmp.1335528368.pdf.F3pMr

